Data Science

Lecture 10-2: Image Data Processing

(Convolutional Neural Network)

e UNIVERSITY
“® OF AMSTERDAM

Lecturer: Yen-Chia Hsu

Date: Mar 2024

This lecture covers image processing basics

using Convolutional Neural Network.

Can we train models to learn convolution

kernels/filters and features automatically?

Deep learning allows us to train a model end-to-end, which means the inputs are raw

pixel values, and the outputs are categories or heatmaps.

.I:
Tradltlona| Featu re EXtraCtiOn 10 numbers g|V|ng
Approach scores for classes
Inota bl s |
training
'4 34 "-| Fiaq i ’ 1 with ZZZKJ'cZifﬁ{Zfé'ni?‘i:J?Sf’:'efv'v"li’f?.“iﬂS'ﬁiﬁi‘i"“"”
e bt
Deep Learning % ' = L L
Approach -
» 10 numbers giving
scores for classes
training

Source -- http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

On 1998, LetNet was developed to learn convolution kernels/filters to recognize digits
(i.e., the MNIST dataset). But due to insufficient computational power and lack of data
during that time, deep learning was not popular in Computer Vision.

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT 6@28x28 S2: f. maps
IT_
I'r ¥ \\

32x32
6@14x14
‘ Full conAecﬂon Gaussnan connections
Convolutions Subsampling Convolutions Subsampllng Full connectlon

?250 layer F6 layer OUTPUT

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

LeCun, Y., et al. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE.

https://ieeexplore.ieee.org/abstract/document/726791

On 2012, a breakthrough paper, AlexNet, showed that we can use multiple GPUs to
run deep Convolutional Neural Networks (CNN) with significantly better performance in

image classification (15.3% Top-5 error on ILSVRC2012 challenge, next best was 25.7%).

. 3“\ "
3\ b =Pl 3
N 3 [
3 3\:\ N : 3
) e dense
N pacwy 352 o i\
128\ AL \ \
X 7] B ey, \13 ‘
cac i EN A
224 sl | 3|} EEENER gl (D]l = |
\ = k= N ' dense g
1 27 3 3]:3
\ B 1000
192 192 128 Max
g’ : 2048 2048
Strife Max: 128 Max pooling
Uof pooling pooling
3 1 48

Krizhevsky, A., et al. (2012). ImageNet classification with deep convolutional neural networks. Proceedings of the NeurlPS conference.

https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

The convolutional parts of the architecture are used to learn kernels/filters to extract

features. The last layer(s) of most CNNs are just linear classifiers.

Convolutional operations to extract features Classifier
N\ S N\
3\‘ 3 | X 2 :
T\ 3) | = | N =
3 ‘\\\\\ -
: 192 192 158 2048 J04g \dense
oy 148 RN
X . 1355 B 13 13
~~~~~~ 3} 3k ST = ‘ X ‘
55 X 2 3| e 13 dense dense
3| 1000
192 192 128 Max
Max 178 Max pooling 2948 2048
pooling pooling

Krizhevsky, A., et al. (2012). ImageNet classification with deep convolutional neural networks. Proceedings of the NeurlPS conference.


https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

The data should be linearly separable by the time it reaches the end of the network.

- " N N 8 3\ o
B\[ Y 3.
5 3 O ull
192 192 2048 2048 \0SARE
2 128 ] ]
5 27 52" .
13 \ 13
B\ [ =3 AN
224 s | ) "'—‘::_‘n 3‘/ 3\ P 3 sl | ' 3 >» >
. e — 13 g dense | [dense "
27 B [ 3\ i
3 [ N 1000
192 192 128 Max | - i
I 2048 2048 Linear
Max 128 Max puissiinig Classifier
pooling pooling

» structure, construction
covering

« commodity, trade good, good

* conveyance, transport

¢ invertebrate

¢ bird

* hunting dog

Donahue, J., et al. (2014).
Decaf: A deep convolutional
activation feature for generic
visual recognition. ICML.

(c) DeCAF; (d) DeCAFg

Source -- https://www.cs.cornell.edu/courses/cs5670/2022sp/lectures/lec21_cnns_for_web.pdf



https://www.cs.cornell.edu/courses/cs5670/2022sp/lectures/lec21_cnns_for_web.pdf
https://proceedings.mlr.press/v32/donahue14.html
https://proceedings.mlr.press/v32/donahue14.html
https://proceedings.mlr.press/v32/donahue14.html

Many learned CNN kernels from the first layer look similar to the hand-crafted kernels.

Figure 3: 96 convolutional kernels of size
11x11 x 3 learned by the first convolutional
layer on the 224 X224 x 3 input images. The
top 48 kernels were learned on GPU 1 while
the bottom 48 kernels were learned on GPU
2. See Section 6.1 for details.

Krizhevsky, A., et al. (2012). ImageNet classification with deep convolutional neural networks. Proceedings of the NeurlPS conference.



https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

Components of CNN typically involves convolutional layers, activation functions (e.g.,

ReLU), pooling layers (e.g., max pooling), fully connected layers, and normalization.

CONV POOL FC
Convolution Layers Pooling Layers Fully-Connected Layers

224x224x64

112x112x64

/@>Q =17 . . :
4

112
224 downsampling %

224

RelLU NORM
Activation Function Normalization
10, R xi,j _ ﬂ]
xi,j =

2
| \/aj + &£

Source -- http://cs231n.stanford.edu/slides/2022/lecture_6_jiajun.pdf



http://cs231n.stanford.edu/slides/2022/lecture_6_jiajun.pdf

There are many ways of combining these CNN components, below is an example.

Input

224

NORM2
POOL2 POOL3
CONV2 CONV3 CONV4 CONV5 FC1 FC2 FC3
o v ‘ O o o (0)
3\\[‘: i 3 \:\ . = 3\
EN | A+ | e
& — - dense
. 192 192 128 2048 2048
128 Py sy
NV 135 % 13 13
"""""""" 3 I A 3 T = R R B
== N = : 13 ' 13 dense’| |dense | | Output
3| 1000
192 192 128 Max
Max 128 Max pooling 2948 2048
pooling pooling

Krizhevsky, A., et al. (2012). ImageNet classification with deep convolutional neural networks. Proceedings of the NeurlPS conference.

11


https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

The fully connected layer flattens a feature map (image) to a 1-dimensional vector

which is then passed to an activation function and goes to the next layer.

10 x 3072 trainable parameters

32x32x3 Image -> stretch to 3072 x 1

(size of output * size of input)

input activation
1 10 x 3072 1 @
3072 . 10
weights
1 number:
b the result of taking a dot product
between a row of W and the input
10-dimentional (a 3072-dimensional dot product)

10 trainable parameters <

(size of output) bias vector

Source -- http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf



http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

The convolutional layers in the CNN perform convolution operations as we discussed

previously (i.e., using a box filter to blur an image).

Filters always extend the full

. depth of the input volume

32x32x3 image /
5x5x3 filter
32 £/
I Convolve the filter with the image
l.e. “slide over the image spatially,

computing dot products”

32

Source -- http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

13


http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

Each step in the convolutional operation produces one number, which is the sum of the

element-wise multiplication, or it can also be seen as a dot product of two tensors.

__— 32x32x3 image

S5x5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.,e. 5*5*3 = 75-dimensional dot product + bias)

3 wlz +b

™~ 1 number:

Source -- http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf 14



http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

We then repeatedly slide the convolution kernel over the input feature map (or images).

The result is a new matrix of numbers.

32 32 32 32

Source -- http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf



http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

For each kernel, after convolution, we get a feature map (or activation map). The input

and output image sizes are different due to how we slide the convolutional kernel.

I

-

V
——0

32

32x32x3 iImage
ox5x3 filter

convolve (slide) over all
spatial locations

activation map

28

28

Source -- http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

16


http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

If we use another convolutional kernel (indicated in green color below) and slide the

kernel over the input image again, we obtain another feature (activation) map.

I

-

V
——0

32

32x32x3 iImage
Sx5x3 filter

convolve (slide) over all
spatial locations

4

activation maps

Source -- http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

1

28

28

17


http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

We can repeat this process many times, and we will get a bunch of feature (activation)

maps. The depth of the feature map depends on the number of filters/kernels.

Consider 6 filters, L
each 3x5x5 6 activation maps,

_ each 1x28x28
3x32x32 image Also 6-dim bias vector:

.

Convolution
Layer

32 T /
39 6x3x5x5 1

3 filters Illlllllllll Stack activations to get a
6x28x28 output image!

Source -- http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf



http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

Depending on the size of a mini-batch, we obtain multiple batches of feature maps.

Notice that we use a lot of data to train the bias vector and the kernels/filters.

6 trainable parameters

(hnumber of filters)

. Consider 6 filters, 2x6x28x28
2x3X32x32 each 3x5x5 Batch of outputs
Batch of images Also 6-dim bias vector:
\ 7
.| Convolution
—
Layer
32 T
/
32 6X3X5X5 U U U H YU
3 filters f ) 6x3x5x5 trainable parameters

(number of filters * number of input

channels * filter width * filter height)

Source -- http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf 19



http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

In the previous slide, we have 456 trainable parameters using the convolutional layer.

Without convolution, using a fully connected layer gives more than 14M parameters.

32

28 x 28 x 6 =4704

32x32x3=3072
Flatten Fu”y Reshape
> » Connected >
Layer
32
Wx+b

3072 x 4704 + 4074
trainable parameters )

Source -- http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

28

28

20


http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

So, convolutional layers can also be seen as a way to reduce the number of trainable

parameters (compared to fully connected layers) by only looking at a local region.

Fully Connected Layer Convolutional Layer

Image source -- https://towardsdatascience.com/convolutional-layers-vs-fully-connected-layers-364f05ab460b

21


https://towardsdatascience.com/convolutional-layers-vs-fully-connected-layers-364f05ab460b

Convolution operations consider stride and padding. Stride means the number of steps

when moving the filter. Padding means adding zeros around the input feature map.

__— 32x32x3 image

3x3x3 filter w
2

32

oO|ojo|o|o

o|lo|[fo|o| o

Stride:
Downsample
output activations

Padding:
Preserve

input spatial
dimensions in
output activations

Source -- http://cs231n.stanford.edu/slides/2022/lecture_6_jiajun.pdf

22


http://cs231n.stanford.edu/slides/2022/lecture_6_jiajun.pdf

Below is a typical example of no padding with stride 1 using kernel size 3. Notice that

the sizes of input (before convolution) and output (after convolution) are different.

Kernel
///
—>
1 Step
Output Output
Input Input

Source -- http://16385.courses.cs.cmu.edu/fall2022/lecture/cnn



http://16385.courses.cs.cmu.edu/fall2022/lecture/cnn

Below is another example of no padding with stride 2 using kernel size 3, which means

we slide the kernel 2 pixels (both horizontally and vertically) for each convolutional step.

Output Output

1 Step

Input Input

Source -- http://16385.courses.cs.cmu.edu/fall2022/lecture/cnn



http://16385.courses.cs.cmu.edu/fall2022/lecture/cnn

We can also pad the input with zeros (i.e., adding zeros around the input). Below is an

example of padding 1 with stride 2 using kernel size 3.

olololo]o]o oo - ololo]fo
0 0 0
0 0 0
0 0 0 0
g g Output —_— s g Output
0 0 0 0
. . 1 Step 5 5
0 0 0 0
olololo]lolol|o|lo]o olololo]lolo|lo|o]fo
Input Input

Source -- http://16385.courses.cs.cmu.edu/fall2022/lecture/cnn



http://16385.courses.cs.cmu.edu/fall2022/lecture/cnn

Below is the formula to calculate the size of output w,,,,; after the convolution operation

(of input size w;,) with different padding p, kernel size k, and stride s.

stride s
ofoJojofo]lo|jofo]oO
Y < > v Example: k=3, s=1, p=1
0 kernel k 0
0 01 In general, the output has size: W= Wi 2P — kJ+1
S
. . | w,t+2p—k | -
0 0 Wout _ + Win + 2 - 3
\ = +1
0 0 i
0 0 — W,
ofoJojofo|lo|jofO]oO
128 width w._ 7

Source -- http://16385.courses.cs.cmu.edu/fall2022/lecture/cnn



http://16385.courses.cs.cmu.edu/fall2022/lecture/cnn

In practice, we usually pick a particular combination of padding and stride to keep the

input and output the same size (for convenience).

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
° 7x7 output!

In general, common to see CONYV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F =3 => zero pad with 1

F =5 =>zero pad with 2

F =7 =>zero pad with 3

Source -- http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf 27



http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

Single depth slice

11112 | 4
S |6 |7 |8
31210
112 ]3| 4

y

Source -- http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

The max pooling layer is designed to have the neural network pay attention to the

most important information by taking the maximum value in a convolution window.

max pool with 2x2 filters
and stride 2

28


http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

The max pooling layer reduces the size of each feature (activation) map independently.

Notice that there are no learnable/trainable parameters in the max pooling layers.

224x224x64
112x112x64
pool
Hyperparameters:
Kernel Size
I Stride

Pooling function

> o 112

ez ~— downsampling

224

Source -- https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture8_convolutionalneuralnetworks_v4.pdf

29


https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture8_convolutionalneuralnetworks_v4.pdf

The activation function in the neural network is designed to introduces non-linearity,

such as the sigmoid activation function below.

o(z)=1/(1+e7%)

Very small 4 - Squashes numbers to range [0,1]
gradients 1 - Historically popular since they

] have nice interpretation as a
saturating “firing rate” of a neuron

“« 3 problems:

D

-10 10
1. Saturated neurons “kill” the

Sigmoid gradients
2. Sigmoid outputs are not
zero-centered
3. exp() is a bit compute expensive

Source -- http://cs231n.stanford.edu/slides/2022/lecture_7_ruohan.pdf 30



http://cs231n.stanford.edu/slides/2022/lecture_7_ruohan.pdf

We can use the tanh function instead of the sigmoid function to mitigate some

problems, but the gradients still saturate (which can lead to vanishing gradients).

Very small .~ 4
gradients

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

tanh(x)

Source -- http://cs231n.stanford.edu/slides/2022/lecture_7_ruohan.pdf

31


http://cs231n.stanford.edu/slides/2022/lecture_7_ruohan.pdf

Typically, the saturating gradient problem can be fixed by using the RelLU activation.
But the gradient when x < 0 is zero, which lead to the dying ReLU problem.

f(x) = max(0, x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

10 v - Not zero-centered output
RelU - An annoyance:

(Rectified Linear Unit)
hint: what is the gradient when x < 07?

Source -- http://cs231n.stanford.edu/slides/2022/lecture_7_ruohan.pdf 32



http://cs231n.stanford.edu/slides/2022/lecture_7_ruohan.pdf

One way to mitigate the dying ReLU problem is to use a leaky RelLU instead, where the

negative value regions still have a slight slope. But in practice people still use RelLU.

10

=] 10

Leaky RelLU
f(z) = max(0.01z, x)

- Does not saturate

- Computationally efficient

- Converges much faster than
sigmoid/tanh in practice! (e.g. 6x)

- will not “die”.

Parametric Rectifier (PRelLU)
f(z) = max(az, )

Source -- http://cs231n.stanford.edu/slides/2022/lecture_7_ruohan.pdf

33


http://cs231n.stanford.edu/slides/2022/lecture_7_ruohan.pdf

The normalization layer normalizes a certain region (e.g., the blue region below) of the

feature maps to zero mean and unit variance. A typical example is Batch Normalization.

Notice that there are trainable parameters in Batch Norm (see the paper for details).

Normalization

Mean of the
Xi,j "I region

For numerical
stability

Variance of
the region

xl,]

loffe, S., & Szegedy, C. (2015, June). Batch normalization:

Batch Norm
A

Heigh N
eight 1 = N N
and = N
Width N \\
\\
N \\
9 \\
<
C

N
Channel Batch

Accelerating deep network training by reducing internal covariate shift. ICML.

34


http://proceedings.mlr.press/v37/ioffe15.html

Batch Normalization is usually inserted after convolutional (or fully connected) layers

and before the activation function (the non-linearity), which has advantages below.

FC

Makes deep networks much easier to train!
Allows higher learning rates, faster convergence

Networks become more robust to initialization

BN

Acts as regularization during training

tanh

N ! P e
L -
- - -

FC

ImageNet

BN

accuracy

= = =Inception
BN-Baseline

4+ BN-x5-Sigmoid

tanh

4 Steps to match Inception
l Il

Training iterations

loffe, S., & Szegedy, C. (2015,
June). Batch normalization:
Accelerating deep network
training by reducing internal
covariate shift. ICML.

Source -- https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture9_networkarchitectures_v3.pdf



https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture9_networkarchitectures_v3.pdf
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html

There are many ways for normalization. Each cube below shows a feature map tensor.
Pixels in blue are normalized by the same mean and variance that are computed from

the values of these blue pixels (C is channel, N is batch, H and W are height and width).

Batch Norm Layer Norm Instance Norm Group Norm

H, W
(LSS

[ LSS/
o WAVAVAAAVI

H, W
H, W
[ S S S S S
Ay

a/,L S S S S S

H, W
[ S S S S S
[ S S/

NAVAVAVAVAN
NAVAVAVAVAN

NAAVAVAWAY

[T 7T 77
NAVAVAVAVAY

NAVAVAVAVAY
[ S S S S S
NAVAVAVAWAN
Z AN\ N\ N\ N\

Wu, Y., & He, K. (2018). Group normalization. In ECCV conference. 36



https://openaccess.thecvf.com/content_ECCV_2018/html/Yuxin_Wu_Group_Normalization_ECCV_2018_paper.html

But deep models are harder to train. In fact, deep models underfit the data. They

perform worse in training and testing than the shallow models.

20
56-layer

)
=

S -
= N
2 5 1
O 10 g 107 20- ayer
& 56-layer 2
g 3
e N
= 20-layer
O(I) i 2 3 érl g é 00 1 2 3 4 5 é
iter. (1e4) iter. (1e4)

Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error.

He, K., et al. (2016). Deep residual learning for image recognition. Proceedings of the CVPR conference.

37


https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html

Intuitively, deep models should perform at least as good as shallow models by copying

layers from the shallower model and setting extra layers to identity (i.e., set f(x) = 0).

RelLU RelLU
f(x) flx) +x \
Batch Norm Batch Norm
|
Conv Conv
t )
RelLU RelLU > f (x)
t 1
Batch Norm Batch Norm
1 ) 1 He, K., et al. (2016). Deep
ConV |dent|ty ConV residua'l .Iearning for image
shortcut ) recognition. CVPR.
ct) X X
Plain Block Residual Block

Source -- https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture9_networkarchitectures_v3.pdf

38


https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture9_networkarchitectures_v3.pdf
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html

By stacking many residual blocks, we can build the residual network architecture (i.e.,

ResNet), which is a reasonable baseline for image classification.

_ 000T %4 _ 000T 24
|jood 3ne jood 3ne
A
715 ‘Auod £xg | ZTS ‘AU0D €XE
A A
715 ‘Auod exg | ZTS ‘AUOD EXE
A
715 ‘Auod exg | Z1S ‘AUOd £XE
A A
715 ‘Auodexg | 215 ‘AU0D £XE
.............. A
‘ [ zrsnuoexe | 215 ‘MU0 £XE
A A
. | yTasmoexe | 2/ ‘715 ‘Auod £xg
......... A
957 ‘Au0d £Xg | 952 ‘AUOD £XE
A A
957 ‘Auod exg | 957 ‘A0 EXE
A
95z ‘Auod £xg | 95 ‘AUOD £XE
A A
957 ‘Auod €xg | 957 ‘AU0 EXE
A
957 ‘Auod exg | 957 ‘A0 EXE
A A
957 ‘Au0d £Xg | 952 ‘AUOD £XE
A
95z ‘Auod £xg | 957 ‘AU0D EXE
A A
95z ‘AU £xg | 957 ‘AU0 EXE
A
957 ‘AU0d €XE | 957 ‘AUOD EXE
A A
957 ‘Auod £xg | 957 ‘AU0D EXE
............. A
: | o9sz‘nuooexg | 952 ‘AU0D EXE
A A
.. | r'9szmnuooexe | 2/ ‘957 ‘Au0d £xg
.......... A
8CT ‘Auod €xg | 82T ‘AUOD £XE
A A
82T ‘Au0d €xg | 8ZT ‘AU0OD EXE
A
8CT ‘AUd €XE | 82T ‘AUOI EXE
A A
8TT ‘AUOd £XE | 8TT ‘AUOD EXE
A
8CT ‘AU0d €Xg | 87T ‘AUOJ EXE
A A
8CT ‘AU0d £Xg | 8TT ‘AUOD £XE
............. A
‘ [ serauooexe | 87T ‘AUOD EXE
A A
.. | u'sernuooexe | 2/ ‘8T ‘MU0 £Xg
.......... A
9 ‘AUOD EXE _ $9 ‘AUOD EXE
A A
$9 ‘AU0D EXE _ 9 ‘AU0d €XE
A
9 ‘AUOD EXE _ ¥9 ‘AU0D EXE
A A
9 ‘AUOD EXE _ $9 ‘AUOD EXE
A
¥9 ‘AUOD EXE | 9 ‘AUOD EXE
A A
9 ‘Auodexe | 9 ‘AUOD EXE
¢/ ‘lood 2/ ‘lood
A A
_ 2/ 'v9 ‘Nu0d [X/ _ 2/ ‘b9 ‘NU0d /X[
A A
a8ew asew
|enpisaJ JaAe|-p€ uie|d JaAe|-y€

39

He, K., et al. (2016). Deep residual learning for image recognition. Proceedings of the CVPR conference.



https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html

We often use pre-trained weights in similar or other tasks as a starting point (but not

from scratch). This idea is called Transfer Learning, where we reuse prior knowledge.

1. Train on Imagenet 2. Small Dataset (C classes) 3. Bigger dataset

e |__Fcc |

Reinitialize <— Train these

e
MaxPool MaxPool MaxPool \
Conv-512 Conv-512 Conv-512 Wlth blgger
Conv-512 Conv-512 Cony-512 dataset, train
MaxPool MaxPool MaxPool more Ia,yers
Conv-512 Conv-512 Conv-512
Conv-512 Conv-512 Conv-512
MaxPool MaxPool > Freeze these MaxPool
Conv-256 Conv-256 Conv-256 > Freeze these
Conv-256 Conv-256 Conv-256
MaxPool MaxPool MaxPool )
Conv-128 Conv-128 Conv-128 Lower learning rate
Conv-128 Conv-128 Conv-128 when finetuning;
MaxPool MaxPool MaxPool 1 / 1 0 of Qriginal LR
Conv-64 Conv-64 Conv-64 : :

is good startin

Conv-64 Conv-64 j Conv-64 ] p Oign t g

Source -- http://cs231n.stanford.edu/slides/2022/lecture_6_jiajun.pdf 40



http://cs231n.stanford.edu/slides/2022/lecture_6_jiajun.pdf

What about processing videos, which are

series of images over time?



There are many ways for video classification (as shown below), where K means the total

number of video frames, N means a subset of neighboring video frames.

Flow 1 to N| |||

A'ne time

— time
time time

a) LSTM b) 3D-ConvNet c) Two-Stream d) 3D-Fused e) Two-Stream
Two-Stream 3D-ConvNet
Action
Action Action Action ! Action
! I ! 3D ConvNet f
L » 000 —» + t
LS;I'I\/I LSTM 3D ConvNet | | '[TT | |
| | ConvNet  ConvNet | | 3D ConvNet || 3D ConvNet
ConvNet | ooo ConvNet‘ | l N - I ConvNet ConvNet HH IH
Images ' I = ‘
Image 1 | oo | Image K 1o K Image 1 Optical Optical Images Optical
Flow 1 to N Image 1 ptica 1to K Flow 1 to K

Carreira, J., & Zisserman, A. (2017). Quo vadis, action recognition? a new model and the kinetics dataset. CVPR. 42



https://openaccess.thecvf.com/content_cvpr_2017/html/Carreira_Quo_Vadis_Action_CVPR_2017_paper.html

Instead of using 2D convolutional kernels, we can use 3D kernels to learn information

from videos. Videos can be represented as a 4D tensor (channel*time*height*width).

V4 \\
/' S
/
/
/ /
R S
N '== - \
- - \\
6Xx6x6 conv 5x5x5 conv 4x4x4 conv \\ ,
S ’
. \
Input: Fc L’ Class

Source -- http://cs231n.stanford.edu/slides/2022/lecture_12_ruohan.pdf

Karpathy, A., et al. (2014).
Large-scale video classification

with convolutional neural
networks. CVPR.

43


http://cs231n.stanford.edu/slides/2022/lecture_12_ruohan.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html

We can also combine CNN and RNN for video classification.

Share model weights (parameters) across time
steps, but use different weights at each layer

Entire network uses 2D

Layer 3 T 1 ]1 T1 I T feature maps
(channel*height*width)
1 1 1 1
Layer 2 —_— —_— —_— Each feature map I
12 depends on two inputs:
* I;: Same layer,
1 1 1 1 previous timestep
« I,: Previous layer,
Layer 1 same time step
2D conv { 2D conv { 2D conv £

Ballas, N., et al. (2016). Delving
deeper into convolutional
networks for learning video
representations. ICLR.

Source -- http://cs231n.stanford.edu/slides/2022/lecture_12_ruohan.pdf 44



http://cs231n.stanford.edu/slides/2022/lecture_12_ruohan.pdf
https://arxiv.org/abs/1511.06432
https://arxiv.org/abs/1511.06432
https://arxiv.org/abs/1511.06432
https://arxiv.org/abs/1511.06432

We can separately consider appearance and motion. The two-stream network below

uses CNN on individual video frames for the original image and optical flow.

input
video

Simonyan, K., & Zisserman, A. (2014). Two-stream convolutional networks for action recognition in videos. NeurlPS.

Spatial stream ConvNet

. optical flow

conv1 || conv2 || conv3 || conv4 || conv5 fullé full7 [|softmax
7X7x96 ||5x5x256 ||3x3x512 || 3x3x512||3x3x512 || 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
norm. norm. pool 2x2
pool 2x2 || pool 2x2
Temporal stream ConvNet

conv1 || conv2 || conv3 || conv4 || conv5 fullé full7 ||softmax
7X7x96 || 5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 || 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout

- norm. || pool 2x2 pool 2x2

multi-frame pool 2x2



https://proceedings.neurips.cc/paper/2014/hash/00ec53c4682d36f5c4359f4ae7bd7ba1-Abstract.html

Optical flow is a computer vision technique that calculates and highlights local motions

(of objects, surfaces, edges, etc.) in consecutive video frames.

,,,,,,,,,,,,,,,

i, RTINS SR e

B S
NN TR

Bl St Sl T
« A ////1//'///7/74‘ .
R ) AT T ZZ e |
,,,,,, AZZZZZZ e = | |
. y AT T ZZZZ . |
)y AT ZZZZ .

(c) (d) (e)

Figure 2: Optical flow. (a),(b): a pair of consecutive video frames with the area around a mov-
ing hand outlined with a cyan rectangle. (¢): a close-up of dense optical flow in the outlined area;
(d): horizontal component d* of the displacement vector field (higher intensity corresponds to pos-
itive values, lower intensity to negative values). (e): vertical component d¥. Note how (d) and (e)
highlight the moving hand and bow.

Simonyan, K., & Zisserman, A. (2014). Two-stream convolutional networks for action recognition in videos. NeurlPS.

46


https://proceedings.neurips.cc/paper/2014/hash/00ec53c4682d36f5c4359f4ae7bd7ba1-Abstract.html

Take-Away Messages

*  We can use deep learning to train models end-to-end from raw data to the desired output.

« Convolutional Neural Networks can learn image filters/kernels from a lot of data.

« Kernel size, stride, and padding will determine the final output size in convolution operations.

* The pooling layer has no trainable parameters and reduces the size of feature maps independently.
* RelU is easy to compute, introduces non-linearity, and can mitigate the vanishing gradient problem.
« The normalization layers (e.g., Batch Norm) can make the network easier to train.

* Residual blocks allow very deep networks to learn identity functions that emulate shallow networks.

« For video classification, we can combine CNN with RNN, or we can use 3D convolutional layers.



Questions?




