
Lecturer: Yen-Chia Hsu

Date: Mar 2024

Data Science
Lecture 8: Text Data Processing

1



2

This lecture covers the pipeline of Natural 

Language Processing (NLP):

• Text preprocessing

• Bag of words and TF-IDF

• Topic modeling

• Word embeddings and Word2Vec

• Sentence/document representations

• Attention mechanism



People can read text, but computers can only read numbers. So, we need to represent 

text as numbers in a way that computers can read, but how?

3

Text Numbers

Image Source Image Source

?

https://unsplash.com/photos/YPgTovTiUv4
https://unsplash.com/photos/faixctm2YRQ


Previously, we have learned the spam classification example about how to represent 

messages as data points on a 2-dimensional space, using some hand-crafted features.

4

0

10

20

30

40

50

0 10 20 30 40 50

Spam

✦✦✦✦✦✦✦✦✦✦✦✦ PRIVATE! Your 2020 

Email Account won $1,000,000 lottery!

✦✦✦✦✦✦✦✦✦ To claim call 08719180248 

to get the lottery money ✧✧✧✧✧✧✧✧

𝑥!: number of special characters

𝑥": number 
of digits

Ham

Hi Yen-Chia, may we have our 

meeting on 5/15 by just email 

update to buy some time? if not, 

zero worries if you need to meet.

(36,22)

(5,3)



Typically, before the deep learning era, we need to preprocess text using tokenization 

(i.e., separating words) and normalization (i.e., standardizing the word format).

5

['google', 'headquarter', 'mountain', 'view', 'amphitheatre', 'pkwy', 'mountain', 'view', 'ca', 'unveil', 

'new', 'android', 'phone', 'consumer', 'electronic', 'show', 'sundar', 'pichai', 'say', 'keynote', 'user', 

'love', 'new', 'android', 'phone']

Google, headquartered in Mountain View (1600 Amphitheatre Pkwy, Mountain View, CA 940430), 

unveiled the new Android phone for $799 at the Consumer Electronic Show. Sundar Pichai said in 

his keynote that users love their new Android phones.



The tokenization step separates a sentence into word fragments (i.e., an array of words).  

We can lower the cases first before tokenization.

6

Google, headquartered in Mountain View (1600 Amphitheatre Pkwy, Mountain View, CA 940430), 

unveiled the new Android phone for $799 at the Consumer Electronic Show. Sundar Pichai said in 

his keynote that users love their new Android phones.

['google', ',', 'headquartered', 'in', 'mountain', 'view', '(', '1600', 'amphitheatre', 'pkwy', ',', 'mountain', 

'view', ',', 'ca', '940430', ')', ',', 'unveiled', 'the', 'new', 'android', 'phone', 'for', '$', '799', 'at', 'the', 

'consumer', 'electronic', 'show', '.', 'sundar', 'pichai', 'said', 'in', 'his', 'keynote', 'that', 'users', 'love', 

'their', 'new', 'android', 'phones', '.']

>>> import nltk
>>> tokens = nltk.tokenize.word_tokenize(s.lower())



During tokenization, we can also remove unwanted tokens, such as punctuations, digits, 

symbols, emojis, stop words (i.e., high frequency words, like “the”), etc.

7

['google', 'headquartered', 'mountain', 'view', 'amphitheatre', 'pkwy', 'mountain', 'view', 'ca', 'unveiled', 

'new', 'android', 'phone', 'consumer', 'electronic', 'show', 'sundar', 'pichai', 'said', 'keynote', 'users', 

'love', 'new', 'android', 'phones']

['google', ',', 'headquartered', 'in', 'mountain', 'view', '(', '1600', 'amphitheatre', 'pkwy', ',', 'mountain', 

'view', ',', 'ca', '940430', ')', ',', 'unveiled', 'the', 'new', 'android', 'phone', 'for', '$', '799', 'at', 'the', 

'consumer', 'electronic', 'show', '.', 'sundar', 'pichai', 'said', 'in', 'his', 'keynote', 'that', 'users', 'love', 

'their', 'new', 'android', 'phones', '.']

>>> stws = nltk.corpus.stopwords.words('english')
>>> tokens = [t for t in tokens if t.isalpha() and t not in stws]



One way to perform normalization is stemming, which chops or replaces word tails (e.g., 

removing “s”) with the goal of approximate the word’s original form.

8

['googl', 'headquart', 'mountain', 'view', 'amphitheatr', 'pkwi', 'mountain', 'view', 'ca', 'unveil', 'new', 

'android', 'phone', 'consum', 'electron', 'show', 'sundar', 'pichai', 'said', 'keynot', 'user', 'love', 'new', 

'android', 'phone']

['google', 'headquartered', 'mountain', 'view', 'amphitheatre', 'pkwy', 'mountain', 'view', 'ca', 'unveiled', 

'new', 'android', 'phone', 'consumer', 'electronic', 'show', 'sundar', 'pichai', 'said', 'keynote', 'users', 

'love', 'new', 'android', 'phones']

>>> stemmer = nltk.stem.porter.PorterStemmer()
>>> clean_tokens = [stemmer.stem(t) for t in tokens]



Another way to perform normalization is lemmatization, which uses dictionaries and full 

morphological analysis to correctly identify the lemma (i.e., base form) for each word.

9

['google', 'headquartered', 'mountain', 'view', 'amphitheatre', 'pkwy', 'mountain', 'view', 'ca', 'unveiled', 

'new', 'android', 'phone', 'consumer', 'electronic', 'show', 'sundar', 'pichai', 'said', 'keynote', 'users', 

'love', 'new', 'android', 'phones']

>>> from nltk.corpus import wordnet
>>> lemmatizer = nltk.stem.WordNetLemmatizer()
>>> pos = [wordnet_pos(p) for p in nltk.pos_tag(tokens)]
>>> clean_tokens = [lemmatizer.lemmatize(t,p) for t, p in pos]

['google', 'headquarter', 'mountain', 'view', 'amphitheatre', 'pkwy', 'mountain', 'view', 'ca', 'unveil', 

'new', 'android', 'phone', 'consumer', 'electronic', 'show', 'sundar', 'pichai', 'say', 'keynote', 'user', 

'love', 'new', 'android', 'phone']



To perform lemmatization appropriately, we need POS (Part Of Speech) tagging, which 

means labeling the role of each word in a particular part of speech.

10

>>> from nltk.corpus import wordnet
>>> def wordnet_pos(nltk_pos):
...   if nltk_pos[1].startswith('V’): return (nltk_pos[0], wordnet.VERB)
...   if nltk_pos[1].startswith('J’): return (nltk_pos[0], wordnet.ADJ)
...   if nltk_pos[1].startswith('R’): return (nltk_pos[0], wordnet.ADV)
...   else: return (nltk_pos[0], wordnet.NOUN)



Now we have the cleaned tokens that represent a sentence. We need to transform 

them to data points in some high-dimensional space. One example is Bag of Words.

11

0

10

20

30

40

50

0 10 20 30 40 50

Ham

Hi Yen-Chia, may we have our 

meeting on 5/15 by just email 

update to buy some time? if not, 

zero worries if you need to meet.

2
1

0
1
1
1
1
1

0
0
0
0
0
1

0

meet
email

account
update

buy
time
zero

worry
money
private
lottery
claim
call

need
get

0
1
1

0
0
0
0
0
1
1
2

1
1

0
1

meet
email

account
update

buy
time
zero

worry
money
private
lottery
claim
call

need
get

(0,1,0,0,0,0,0,1,1,1,1,1,0,1,2)

(1,0,1,1,2,1,1,0,0,0,0,0,1,1,0)

Spam

✦✦✦✦✦✦✦✦✦✦✦✦ PRIVATE! Your 2020 

Email Account won $1,000,000 lottery! 

✦✦✦✦✦✦✦✦✦ To claim call 08719180248 

to get the lottery money ✧✧✧✧✧✧✧✧

𝑥#: frequency of some specific word 𝑤! 



These data points are also called vectors, which means arrays of numbers that encode 

both the direction and length information.

12

0

10

20

30

40

50

0 10 20 30 40 50Vector of the ham message

= [0 1 0 0 0 0 0 1 1 1 1 1 0 1 2 0 0]

Vector of the spam message

= [1 0 1 1 2 1 1 0 0 0 0 0 1 1 0 0 0 0]

2
1

0
1
1
1
1
1

0
0
0
0
0
1

0

meet
email

account
update

buy
time
zero

worry
money
private
lottery
claim
call

need
get

0
1
1

0
0
0
0
0
1
1
2

1
1

0
1

meet
email

account
update

buy
time
zero

worry
money
private
lottery
claim
call

need
getHam

Hi Yen-Chia, may we have our 

meeting on 5/15 by just email 

update to buy some time? if not, 

zero worries if you need to meet.

Spam

✦✦✦✦✦✦✦✦✦✦✦✦ PRIVATE! Your 2020 

Email Account won $1,000,000 lottery! 

✦✦✦✦✦✦✦✦✦ To claim call 08719180248 

to get the lottery money ✧✧✧✧✧✧✧✧

More about vectors -- https://www.3blue1brown.com/lessons/vectors

https://www.3blue1brown.com/lessons/vectors


The Bag of Words approach can be problematic since it weights all words equally, even 

after removing stop words. For example, ”play” can appear many times in sports news.

13

If a word appears in almost all documents, it 

should be less important, since seeing this word 

does not give us much information.

If a word appears in only a few documents (and 

frequently in these documents), it contains more 

information and should be more important.



So, we can use TF-IDF (term frequency-inverse document frequency) to transform 

sentences or documents into vectors. Intuitively, TF-IDF means weighted Bag of Words.

14Source -- https://www.nlpdemystified.org/course/tf-idf

https://www.nlpdemystified.org/course/tf-idf


Term Frequency (TF) measures how frequently a term (word) appears in a document. 

There are different implementations, such as using a log function to scale it down.

15Source -- https://www.nlpdemystified.org/course/tf-idf

Alternative Implementation: tf 𝑡, 𝑑 = log!"(𝑓#,% + 1)

https://www.nlpdemystified.org/course/tf-idf


Inverse Document Frequency (IDF) weights each word by considering how frequently it 

shows in different documents. IDF is higher when the term appears in fewer documents.

16Source -- https://www.nlpdemystified.org/course/tf-idf

https://www.nlpdemystified.org/course/tf-idf


We can also use topic modeling to encode a sentence/document into a distribution of 

topics. Below is an intuition of how the Latent Dirichlet Allocation method works. 

17Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84.

Topic Vectors
Documents

Topic 
Assignment

Topic 
Distribution

https://www.cs.columbia.edu/~blei/papers/Blei2012.pdf


Each topic vector is represented by a list of words with different weights.

18Source -- https://maartengr.github.io/BERTopic/getting_started/visualization/visualization.html

https://maartengr.github.io/BERTopic/getting_started/visualization/visualization.html


19Source -- https://github.com/ddangelov/Top2Vec

Each topic vector is represented by a list of words with different weights.

https://github.com/ddangelov/Top2Vec


After transforming text into vectors, we can use these vectors for national language 

processing tasks, such as sentence/document classification (or clustering).

20

✦✦✦✦✦✦✦✦✦✦✦✦ PRIVATE! Your 2020 Email Account 

won $1,000,000 lottery! ✦✦✦✦✦✦✦✦✦ To claim call 

08719180248 to get the lottery money ✧✧✧✧✧✧✧✧

Hi Yen-Chia, may we have our meeting on 5/15 by just 

email update to buy some time? if not, zero worries if you 

need to meet.

Would you be willing to meet with me on 3/26 Thursday 

when I was in TU Delft after (or before) giving the guest 

lecture (10:35am-11:50am)?

Text

Vector 1

[1 0 1 1 2 1 1 0 0 0 0 0 1 1 0 0 0 0]

Vector 2

[0 1 0 0 0 0 0 1 1 1 1 1 0 1 2 0 0]

Vector 3

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1]

Vectors

Build 
Model

Predictions
/Clustering

Spam

Ham



?

We have seen the approach of crafting features manually. But we can use deep learning 

to automate feature engineering. What should be the input vectors in this case?

21

Image Source

https://unsplash.com/photos/YPgTovTiUv4


We can use one-hot encoding. But this approach is inefficient (in terms of computation) 

because it creates long vectors with many zeros, which uses a lot of computer memory.

22Word Embeddings -- https://www.tensorflow.org/text/guide/word_embeddings

0 0 0 0 0 0 0 … 0
0 0 0 0 0 0 0 … 0
0 0 0 0 0 0 0 … 0

All other possible words

𝑤/01

𝑤123

𝑤401

https://www.tensorflow.org/text/guide/word_embeddings


Another problem of one-hot encoding is that it does not encode similarity. For example, 

the cosine similarity between two one-hot encoded vectors are always zero.

23Cosine Similarity -- https://www.learndatasci.com/glossary/cosine-similarity/

CosineSimilarity 𝑤"#$ , 𝑤%#$ = cos(𝜃) =
< 𝑤"#$ ⋅ 𝑤%#$ >
𝑤"#$ 𝑤%#$

= 1 0 0 0 0 ⋅

0
0
0
1
0

= 0

dot product = 𝑤$%&' 𝑤(%&
𝑤$%&'

𝑤(%&

length of 𝑤$%& 

https://www.learndatasci.com/glossary/cosine-similarity/


The dot product of two vectors can also be used to measure similarity, which considers 

both the angle and the vector lengths. Cosine similarity is a normalized dot product.

24Source of the graph and more information about the dot product -- https://www.youtube.com/watch?v=C0sPtQ3wX9o

https://www.youtube.com/watch?v=C0sPtQ3wX9o


Exercise 8.1: Given the following word embeddings, compute the cosine similarity 

between “desk” and “table”, as well as between “desk” and “desks”.

25

CosineSimilarity 𝑝&, 𝑝'

=
< 𝑝& ⋅ 𝑝' >
𝑝& 𝑝'

=
𝑥& 𝑦& ⋅

𝑥'
𝑦'

𝑝& 𝑝'

=
𝑥&𝑥' + 𝑦&𝑦'

𝑥&' + 𝑦&' ⋅ 𝑥'' + 𝑦''

dot product

𝑝! = (𝑥!, 𝑦!)

𝑝" = (𝑥", 𝑦")



We can use word embeddings to efficiently represent text as vectors, in which similar 

words have a similar encoding in a high-dimensional space. 

26Word Embeddings -- https://www.tensorflow.org/text/guide/word_embeddings

Cat

Bus

Coffee

Dog

Pet

Train

Car

Water

Tea

Catbus

Box

Paper

0

0,5

1

1,5

2

2,5

3

3,5

0 0,5 1 1,5 2 2,5 3

Se
co

nd
 d

im
en

si
on

First dimension

Word Embeddings

https://www.tensorflow.org/text/guide/word_embeddings


Position (e.g., distance and direction) in the word embedding vector space can encode 

semantic relations, such as the relation between a country and its capital. 

27Source -- https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space

https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space


But how can we train the word embeddings? Intuitively, we can represent words by 

their context (i.e., the nearby words within a fixed-size window). 

28Source -- https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf

...government debt problems turning into

...saying that Europe needs unified

...India has just given its

banking

banking

banking 

crises as happened in 2009...

regulation to replace the hodgepodge...

system a shot in the arm...

These context words will be used to represent the word: “banking”

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf


Word2Vec is a method to train word embeddings by context. The goal is to use the 

center word to predict nearby words as accurate as possible, based on probabilities.

29Source -- https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf

We need to maximize these probabilities for all words in the text body

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf


How is probability related to word vectors? We use the dot product similarity of word 

vectors to calculate probabilities, with the help of the softmax function.

30Source -- https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf

𝑃 𝑤5 𝑤1 =
exp(𝑤56𝑤1)

∑789: exp(𝑤76𝑤1)

𝑤1𝑤5𝑤5 𝑤5 𝑤5

𝑤56𝑤1
softmax function

compare similarity

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf


31Source -- https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf

The softmax function maps any arbitrary values to a probability distribution.

𝑃(𝑥;) =
exp(𝑥;)

∑789: exp(𝑥7)
𝑥;

softmax function

Larger dot product means larger probability

The entire denominator is just for normalization

The exponential function makes things positive: exp 𝑥 = 𝑒) 

𝑃 𝑤5 𝑤1 =
exp(𝑤56𝑤1)

∑789: exp(𝑤76𝑤1)
𝑤56𝑤1

softmax function

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf


32More about the softmax function -- https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax

Below is an example of how the softmax function maps numbers to probabilities.

2
1
0.1

0.66
0.24
0.10

exp(2)
exp 2 + exp 1 + exp(0.1)

exp(1)
exp 2 + exp 1 + exp(0.1)

exp(0.1)
exp 2 + exp 1 + exp(0.1)

𝑃(𝑥;) =
exp(𝑥;)

∑789: exp(𝑥7)
𝑥;

softmax function

Remember that the denominator is just for normalization 

https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax


For each word position 𝑡 = 1,… , 𝑇 with window size 𝑚, we can adjust the word vectors 

(𝜃) to maximize the likelihood function, based on the probability that we calculated.

33More about Maximum Likelihood Estimation -- https://www.youtube.com/watch?v=Dn6b9fCIUpM

𝑤1𝑤1B9𝑤1BC 𝑤1D9 𝑤1DC

https://www.youtube.com/watch?v=Dn6b9fCIUpM


To sum up, below are the high-level ideas for training word embeddings:

34Mikolov, T., et al. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.

• We have a large text corpus (i.e., text body) with a long list of words 

• Every word is represented by a vector 𝑤

• For each position 𝑡 in the text, determine the center word 𝑤$ and the 

context words 𝑤( (i.e., the words that are nearby 𝑤$)

• For each word 𝑤$, compute the probability of 𝑃(𝑤(|𝑤$) using the dot 

product similarity of word vectors 𝑤( and 𝑤$

• Keep adjusting the word vectors to maximize this probability 

𝑤1𝑤5𝑤5 𝑤5 𝑤5

https://arxiv.org/pdf/1301.3781.pdf


35Playground for word embeddings -- http://projector.tensorflow.org/

http://projector.tensorflow.org/


36

Word embeddings represent words in vectors. 

But how to represent sentences in vectors?



We can stack all the word vectors into a matrix, where each column means a dimension 

of the word vector, and the number of rows means sentence length.

37

['google', 'headquarter', 

'mountain', 'view', 

'amphitheatre', 'pkwy', 

'mountain', 'view', 'ca', 'unveil', 

'new', 'android', 'phone', 

'consumer', 'electronic', 'show', 

'sundar', 'pichai', 'say', 

'keynote', 'user', 'love', 'new', 

'android', 'phone']

0.12 −2.12 1.22 ⋯ ⋯ 4.21
3.11 0.21 −4.21 ⋯ ⋯ 1.94
⋮ ⋮ ⋮ ⋯ ⋯ ⋮
⋮ ⋮ ⋮ ⋯ ⋯ ⋮
⋮ ⋮ ⋮ ⋯ ⋯ ⋮

−5.22 2.74 1.08 ⋯ ⋯ −2.33

google

headquarter

phone

First dimension 
of word vector



For a deep feedforward network (or convolutional neural network), all inputs need to 

have the same size. But sentences can have different length. So, what should we do?

38

Mini-batch of 
6 sentences

Numbers that 
represent a sentence



We can drop the parts that are too long and pad the parts that are too short with zeros.

39

Drop these 
numbers

Pad these parts 
with zeros

Modified mini-batch 
of 6 sentences



After we make sure that all input data have the same size, we can put them into deep 

neural networks for different tasks, such as sentence/document classification.

40

Mini-batches

Kim, Y. (2014). Convolutional neural networks for sentence classification. EMNLP.

https://arxiv.org/abs/1408.5882


We can also use the recurrent neural network (RNN) to takes inputs with various lengths. 

Recurrent connections are shown in the red cyclic edges (and unfolded into red arrows).

41Source -- https://d2l.ai/chapter_recurrent-neural-networks/index.html

https://d2l.ai/chapter_recurrent-neural-networks/index.html


Typically, we feed features to the deep neural net, but we feed observations (for each 

time step) to the recurrent neural net. Notice that the input 𝑋 below is transposed. 

42

𝑋) =

𝑥&
& 𝑥&

' ⋯ ⋯ 𝑥&
)

𝑥'
& 𝑥'

' ⋯ ⋯ 𝑥'
)

⋮ ⋮ ⋯ ⋯ ⋮
⋮ ⋮ ⋯ ⋯ ⋮

𝑥*
& 𝑥*

' ⋯ ⋯ 𝑥*
)

feature: 𝑥"

observation at 
time 𝑇: 𝑥($)

An example for natural language processing:

• Feature: the word embedding dimensions

• Observation: the word at position 𝑇 in a sentence 

['google', 'headquarter',          …         'phones']



We can combine RNNs into a sequence-to-sequence (Seq2Seq) model for sentence 

classification or sentiment analysis. In this case, the output sequence has only one label.

43Source -- https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture05-rnnlm.pdf

We can just use the output from the 
final layer to represent the sentence

Sentence 
Representation

RNN

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture05-rnnlm.pdf


Seq2Seq models are flexible in the input and output sizes. The rectangles in the graph 

below mean vectors, red rectangles mean inputs, and blue rectangles mean outputs. 

44Source -- http://karpathy.github.io/2015/05/21/rnn-effectiveness/

e.g., image 
classification

e.g., image 
captioning

e.g., sentence 
classification

e.g., machine 
translation

e.g., video frame 
classification

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


We can generalize the Seq2Seq model further to the encoder-decoder structure, where 

the encoder produces an encoded representation of the entire input sequence.

45Source -- https://d2l.ai/chapter_recurrent-modern/seq2seq.html

Encoder Decoder

Encoded Representation

https://d2l.ai/chapter_recurrent-modern/seq2seq.html


The problem of using only the final encoder output is that it is hard for the model to 

remember previous information. Instead, we can have the model considers all outputs.

46Source -- https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture05-rnnlm.pdf

RNN Encoder

We can take the mean/max of the encoder 
outputs or even train a one-layer neural net 
to weight the encoder outputs.

Sentence 
Representation

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture05-rnnlm.pdf


But, using the same weights may be insufficient, as we may want the weights to change 

according to different inputs. We can use the attention mechanism to achieve this.

47Yang, Z., et al. (2016, June). Hierarchical attention networks for document classification. NAACL conference.

Attention Layer

Sentence 
Representation

https://aclanthology.org/N16-1174/


48The figure is from the Stanford CS224N course -- https://web.stanford.edu/class/cs224n/slides/cs224n-2024-lecture08-transformers.pdf

Attention is weighted averaging, which lets you do lookups!

11

Attention is just a weighted average – this is very powerful if the weights are learned!

In a lookup table, we have a table of keys 
that map to values. The query matches 
one of the keys, returning its value.

In attention, the query matches all keys softly, 
to a weight between 0 and 1. The keys’ values 
are multiplied by the weights and summed.

https://web.stanford.edu/class/cs224n/slides/cs224n-2024-lecture08-transformers.pdf


𝑞

Query vector 
(come from the 

previous 
prediction) 

Step 3: Compute attention scores (dot product similarity):

• 𝑒& = 𝑞$𝑢& 𝑞 is trainable

49

Step 4: Compute the attention distribution using softmax:

• [𝑎'	 𝑎( 	…	𝑎$] = softmax([𝑒'	 𝑒( 	… 	𝑒$])

Step 1: Get the encoder output values (from the RNN):

• ℎ&

Source -- https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture07-final-project.pdf

There are many ways of doing step 2 and 3

Step 2: Transform encoder outputs (dimension reduction):

• 𝑢& = tanh 𝑊ℎ& 𝑊 is trainable

Keys

Sentence 
Representation

Prediction

Step 5: Compute attention-weighted sum of encoder output:

• ∑&)'$ 𝑎&ℎ&

Values

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture07-final-project.pdf


Sequence-to-sequence with attention

En
co

de
r 

RN
N

Source sentence (input)

<START>il           a         m’      entarté

Decoder RNN
At

te
nt

io
n 

di
st

rib
ut

io
n

At
te

nt
io

n 
sc

or
es

Attention 
output

Concatenate attention output 
with decoder hidden state, then 
use to compute !"!	as before

!"!	

he

18

50The figure is from the Stanford CS224N course -- https://web.stanford.edu/class/cs224n/slides/cs224n-2024-lecture08-transformers.pdf

https://web.stanford.edu/class/cs224n/slides/cs224n-2024-lecture08-transformers.pdf


Sequence-to-sequence with attention

En
co

de
r 

RN
N

Source sentence (input)

<START>il           a         m’      entarté

Decoder RNN
At

te
nt

io
n 

sc
or

es

he

At
te

nt
io

n 
di

st
rib

ut
io

n

Attention 
output

!"#	

hit

19

Sometimes we take the 
attention output from the 
previous step, and also 
feed it into the decoder 
(along with the usual 
decoder input). We do 
this in Assignment 4.

51The figure is from the Stanford CS224N course -- https://web.stanford.edu/class/cs224n/slides/cs224n-2024-lecture08-transformers.pdf

https://web.stanford.edu/class/cs224n/slides/cs224n-2024-lecture08-transformers.pdf


Sequence-to-sequence with attention

En
co

de
r 

RN
N

Source sentence (input)

<START>il           a         m’      entarté

Decoder RNN
At

te
nt

io
n 

sc
or

es
At

te
nt

io
n 

di
st

rib
ut

io
n

Attention 
output

he hit

!"$	

me

20

52The figure is from the Stanford CS224N course -- https://web.stanford.edu/class/cs224n/slides/cs224n-2024-lecture08-transformers.pdf

https://web.stanford.edu/class/cs224n/slides/cs224n-2024-lecture08-transformers.pdf


Sequence-to-sequence with attention

En
co

de
r 

RN
N

Source sentence (input)

<START>il           a         m’      entarté

Decoder RNN
At

te
nt

io
n 

sc
or

es
At

te
nt

io
n 

di
st

rib
ut

io
n

Attention 
output

he hit me

!"%	

with

21

53The figure is from the Stanford CS224N course -- https://web.stanford.edu/class/cs224n/slides/cs224n-2024-lecture08-transformers.pdf

https://web.stanford.edu/class/cs224n/slides/cs224n-2024-lecture08-transformers.pdf


Sequence-to-sequence with attention

En
co

de
r 

RN
N

Source sentence (input)

<START>il           a         m’      entarté

Decoder RNN
At

te
nt

io
n 

sc
or

es
At

te
nt

io
n 

di
st

rib
ut

io
n

Attention 
output

he hit with

!"&	

a

me

22

54The figure is from the Stanford CS224N course -- https://web.stanford.edu/class/cs224n/slides/cs224n-2024-lecture08-transformers.pdf

https://web.stanford.edu/class/cs224n/slides/cs224n-2024-lecture08-transformers.pdf


There is a more complicated attention mechanism, “multi-head self attention”, which is 

the building block of the Transformer network architecture.

55Vaswani, A., Shazeer, et al. (2017). Attention is all you need. Advances in neural information processing systems.

https://arxiv.org/pdf/1706.03762.pdf


• We need to represent text as numbers for Natural Language Processing tasks.

• We can train word embeddings (vectors) to map words into data points in a high dimensional space.

• One way to train word embeddings is to use the context (e.g., nearby words) to represent a word.

• Word embeddings also encode semantics, which means similar words are close to each other.

• Cosine similarity and dot product can be used to measure how vectors are close to each other.

• Softmax is a commonly used function in deep learning to map arbitrary values to probabilities.

• Recurrent Neural Network can take inputs with various lengths (e.g., sentences).

• Attention helps the model learn information from the past and focus on a certain part of the source.

56

Take-Away Messages



57

Questions?


