Data Science

Lecture 8: Text Data Processing

e UNIVERSITY
“® OF AMSTERDAM

Lecturer: Yen-Chia Hsu

Date: Mar 2024

This lecture covers the pipeline of Natural

Language Processing (NLP):

* Text preprocessing

« Bag of words and TF-IDF

« Topic modeling

Word embeddings and Word2Vec

« Sentence/document representations

e« Attention mechanism

People can read text, but computers can only read numbers. So, we need to represent

text as numbers in a way that computers can read, but how?

Image Source

Image Source
\J N

?

Text » Numbers

i 0.4

/A@ +140.04
p s0N QR

https://unsplash.com/photos/YPgTovTiUv4
https://unsplash.com/photos/faixctm2YRQ

Previously, we have learned the spam classification example about how to represent

messages as data points on a 2-dimensional space, using some hand-crafted features.

50 , Spam
B FrivATE] Your 2020
40 Email Account won I1IOOOIOOO |ottery|
B o cloim call 08719180248
30 Ham to get the lottery money _
Hi Yen-ChiaI may we have our
X 20 meeting on 515 by just email =+ (36,22)

of digits

update to buy some timel] if not]

zero worries if you need to meet]

10 V

= (5.3)

0 10 20 30 40 50

x1: number of special characters

Typically, before the deep learning era, we need to preprocess text using tokenization

(i.e., separating words) and normalization (i.e., standardizing the word format).

Google, headquartered in Mountain View (1600 Amphitheatre Pkwy, Mountain View, CA 940430),

unveiled the new Android phone for $799 at the Consumer Electronic Show. Sundar Pichai said in

his keynote that users love their new Android phones.

\

['google’, 'headquarter’, 'mountain’, 'view', ‘amphitheatre’, 'pkwy', 'mountain’, 'view', 'ca’, 'unveil’,
'new’, 'android’, 'phone’, 'consumer’, 'electronic’, 'show', 'sundar’, 'pichai', 'say', 'keynote’, 'user’,

'love', 'new', 'android', 'phone']

The tokenization step separates a sentence into word fragments (i.e., an array of words).

We can lower the cases first before tokenization.

Google, headquartered in Mountain View (1600 Amphitheatre Pkwy, Mountain View, CA 940430),
unveiled the new Android phone for $799 at the Consumer Electronic Show. Sundar Pichai said in

his keynote that users love their new Android phones.

>>> import nltk

>>> tokens = nltk.tokenize.word tokenize(s.lower())

['google’, ',', 'headquartered’, 'in', 'mountain’, 'view', '(', "1600', 'amphitheatre’, '‘pkwy’, *,', 'mountain’,
'view', ',', 'ca’, '940430',)", ',', 'unveiled’, 'the', 'new’, 'android’, 'phone’, 'for', '$', '799', 'at’, 'the’,

'‘consumer’, 'electronic’, 'show', ", 'sundar’, 'pichai’, 'said', 'in', 'his', 'keynote’, 'that', 'users', 'love’,

'their’, 'new’, 'android’, 'phones’, '.']

During tokenization, we can also remove unwanted tokens, such as punctuations, digits,

symbols, emojis, stop words (i.e., high frequency words, like “the"), etc.

['google’, '}, 'headquartered’, 'In', 'mountain’, 'view', (', 1600, 'amphitheatre’, 'pkwy’, '}', 'mountain’,
'view', ', 'ca’, '240430', '), '}, 'unveiled’, 'the', 'new’, 'android’, 'phone’, 'for', '$', '799', 'at’, 'the’,

‘consumer’, 'electronic’, 'show’, "I, 'sundar’, 'pichai’, 'said’, 'in’', 'his', 'keynote', 'that', 'users’, 'love’,

'their', 'new’, 'android’, 'phones’, '\']

>>> stws = nltk.corpus.stopwords.words('english')

>>> tokens = [t for t in tokens if t.isalpha() and t not in stws]

['google’, 'headquartered’, 'mountain’, 'view', 'amphitheatre', 'pkwy', 'mountain’, 'view', 'ca’, 'unveiled’,
'new’, 'android’, 'phone’, 'consumer’, 'electronic’, 'show’, 'sundar’, 'pichai’, 'said', 'keynote’, 'users’,

'love', 'new', 'android’, 'phones’]

One way to perform normalization is stemming, which chops or replaces word tails (e.g.,

removing “s"”) with the goal of approximate the word’s original form.

['google’, 'headquartered’, 'mountain’, 'view', ‘amphitheatre’, 'pkwy', 'mountain’, 'view', 'ca’, 'unveiled’,
'new’, 'android’, 'phone’, 'consumer’, ‘electronie’, 'show', 'sundar’, 'pichai’, 'said', 'keynote’, 'users’,

'love', 'new', 'android', 'phones']

>>> stemmer = nltk.stem.porter.PorterStemmer ()

>>> clean_tokens = [stemmer.stem(t) for t in tokens]

['googl’, 'headquart’, 'mountain’, 'view', 'amphitheatr’, 'okwi', 'mountain’, 'view', 'ca’, 'unveil’, 'new’,
1

‘android', 'phone’, 'consum’, 'electron’, 'show’, 'sundar’, 'pichai’, 'said', 'keynot’, 'user', 'love’, 'new’,

‘android', 'phone']

Another way to perform normalization is lemmatization, which uses dictionaries and full

morphological analysis to correctly identity the lemma (i.e., base form) for each word.

['google’, 'headquartered’, 'mountain’, 'view', 'amphitheatre’, 'pkwy', 'mountain’, 'view', 'ca’, 'unveiled’,
'new', 'android’, 'phone’, 'consumer’, ‘electronic’, 'show’, 'sundar’, 'pichai’, 'said’, 'keynote’, 'users’,
'love’, 'new’, 'android’, 'phones']

from nltk.corpus import wordnet
lemmatizer = nltk.stem.WordNetLemmatizer ()

pos = [wordnet pos(p) for p in nltk.pos tag(tokens)]
clean _tokens = [lemmatizer.lemmatize(t,p) for t, p in pos]

['google’, 'headquarter’, 'mountain’, 'view', 'amphitheatre’, 'pkwy', 'mountain’, 'view', 'ca’, ‘'unveil’,
'new’, 'android’, 'phone’, 'consumer’, ‘electronic’, 'show', 'sundar’, 'pichai', 'say’, 'keynote’, 'user’,

'love', 'new’, 'android’, 'phone']

To perform lemmatization appropriately, we need POS (Part Of Speech) tagging, which

means labeling the role of each word in a particular part of speech.

Google , headquartered in Mountain View (1600 Amphitheatre Pkwy

NOUN PUNCT VERB ADP NOUN NOUN PUNCT NUM NOUN NOUN PUNCT
Mountain View , CA 940430) , unveiled the new Android phone for $799 at the Consumer Electronic Show
NOUN NOUN PUNCT NOUN NUM PUNCT PUNCT VERB DET ADJ NOUN NOUN ADP NUM ADP DET NOUN NOUN NOUN PUNC

Sundar Pichai said in his keynote that users love their new Android phones
NOUN NOUN VERB ADP PRON NOUN ADP NOUN VERB PRON ADJ NOUN NOUN

>>> from nltk.corpus import wordnet
>>> def wordnet pos(nltk pos):

if nltk pos[l].startswith('V’): return (nltk pos[@], wordnet.VERB)

if nltk _pos[l].startswith('J’): return (nltk pos[@], wordnet.ADJ)
if nltk pos[l].startswith('R’): return (nltk pos[@], wordnet.ADV)
else: return (nltk pos[0], wordnet.NOUN)

Now we have the cleaned tokens that represent a sentence. We need to transform

them to data points in some high-dimensional space. One example is Bag of Words.

get
need
call
claim
lottery
private
money
worry
zero
time
buy
update
account
email
meet

O O O o o

N

Ham

Spam

+4 444444444+ PRIVATE! Your 2020

Email Account won $1,000,000 lottery!
+4 4444444+ Toclaim call 08719180248

to get the lottery money 4 <<$<<<4<<

Hi Yen-Chia, may we have our
meeting on 5/15 by just email

update to buy some time? if not,

zero worries if you need to meet.

<+ (1,0,1,1,2,1,1,0,0,0,0,0,1,1,0)

-

(0,1,0,0,0,0,0,1,1,1,1,1,0,1,2)

>

x;: frequency of some specific word w;

get
need
call
claim
lottery
private
money
worry
zero
time
buy
update

account

email
meet

11

These data points are also called vectors, which means arrays of numbers that encode

both the direction and length information.

Ham Spam
Hi Yen-Chia, may we have our + 4444444444+ PRIVATE! Your 2020
get 0 A meeting on 5/15 by just email Email Account won $1,000,000 lottery!
need = 1 update to buy some time? if not, 444444444+ Toclaim call 08719180248
call 0
cdaim 0 zero worries if you need to meet. to get the lottery money 4 <<$<<<4<<
lottery 0
private 0 °
money 0
worry m 1
zero m 1
time m 1
buy = 1 Vector of the spam message
update m 1
account 0 =[101121100000110000]
email = 1
meet mmm)

Vector of the ham message

=[01000001111101200]

More about vectors -- https://www.3blue 1Tbrown.com/lessons/vectors

get
need
call
claim
lottery
private
money
worry
zero
time
buy
update
account
email
meet

12

https://www.3blue1brown.com/lessons/vectors

The Bag of Words approach can be problematic since it weights all words equally, even

after removing stop words. For example, "play” can appear many times in sports news.

If a word appears in only a few documents (and
frequently in these documents), it contains more

information and should be more important.

If a word appears in almost all documents, it
should be less important, since seeing this word

does not give us much information.

13

So, we can use TF-IDF (term frequency—inverse document frequency) to transform

sentences or documents into vectors. Intuitively, TF-IDF means weighted Bag of Words.

Final TF-IDF score for a term in a document

wy g = ti(t, d) x idf(t, D)

The more frequently a term ...and the fewer times it
appears in a given document... appears in other documents...

The higher its TF-IDF value.

Source -- https://www.nlpdemystified.org/course/tf-idf

14

https://www.nlpdemystified.org/course/tf-idf

Term Frequency (TF) measures how frequently a term (word) appears in a document.

There are different implementations, such as using a log function to scale it down.

Term Frequency (TF)

tf(t,d) = fi.4

The term frequency is just how
many times the term occurs in
the document.

Given a word(t) in a document(d)...

Alternative Implementation: tf(t, d) = logo(frq + 1)

Source -- https://www.nlpdemystified.org/course/tf-idf 15

https://www.nlpdemystified.org/course/tf-idf

Inverse Document Frequency (IDF) weights each word by considering how frequently it

shows in different documents. IDF is higher when the term appears in fewer documents.

Inverse Document Frequency (IDF)

N is the number of

N 5 documents.

TVt

n,is the number of

documents t appears in.

Given a term(t) and a corpus(D)...
We take the log here as well.

Source -- https://www.nlpdemystified.org/course/tf-idf

16

https://www.nlpdemystified.org/course/tf-idf

We can also use topic modeling to encode a sentence/document into a distribution of
topics. Below is an intuition of how the Latent Dirichlet Allocation method works.

Topic Vectors

Documents

gene 0.04
dna 0.02

genetic 0,01 Seeking Life’s Bare (Genetic) Necessities

“yy COLD SPRING HARBOR, NEW YORK— ‘are not all that far apart,” cspecially in
YOO

How many genes does an @rganism ncgd to - comparison to tlu n QCQ genes in the hu
/ survivel Last week at the genome meeting : :

here,” two genome researchers with radically

different approaches presented complemen-

life 0.02 tary views of the basic genes needed for[life:
evolve 0.01 One research team, using computer analy numbers
. 1 ses to compare known genomes, concluded MOre ¢enoOmes are ¢
organism 0.0 that today’s|jorganisms can be sustained with sequenced. “It may be a way of organizing

Sy just 25C genes, and that the earliest life forms any newly sequenced genome,” explains

required a mere 128 genes. The _— Arcady Mushegian, a computational mo-
/ other researcher mapped genes / ™ lecular biologist at the Natic “enter
\ P . e . ~

il

Topic
Distribution

in a simple parasite and esti

mated that for this organism, |

800 genes are plenty todo the |
\

. /) Redundant and Relales -
brain 0.04 job—but that anything short \ feiniiy) GO paasle ““ - Betn genes g
neuron 0.02 of 100 wouldn’t be enough. ¥R DX ‘o biocnemica ~genes 122 gones 3
nerve 0.01 Although the numbers don't "oz genes / l ! £
: . . . ! 256 ”""""" 28 &
match precisely, those predictions L oenss gene set | gun.s' T
L] genome / ; 7 25090nls / 4
- i ' T Topic
* Genome Mapping and Sequenc- _,/ o
ing, Cold Spring Harbor, New York, Stripping down. Computer analysis yields an esti- ASSlgnment
May 8 to 12 mate of the minimum modern and ancient genomes.
data 0.02

SCIENCE e VOL. 272 ¢ 24 MAY 1996

number 0.02
computer 0.01 |
[

"1 j

_ Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84.

https://www.cs.columbia.edu/~blei/papers/Blei2012.pdf

Each topic vector is represented by a list of words with different weights.

D2
Topic O Topic 1 Topic 2
5_drive i_drives
1_game_ "_baseball team - encryption _ pain -
19_mhz_deck_speed
® .
0_tea me 25 27_monitdri‘lonitors__v‘ games - phone - disease -
[]
. 2 hockey - encrypted - candida .
20_bike_ﬁes_miles 11 _jpeg&-age_ players - security - health .
L] ™ ®

29_Iane_!§ redriving s
D1

® *
=

17_space?hsolar_space Topic 3 Topic 5 Topic 6

15_space_launch_moon
4 car voltage space
o'.
®23_fbiYgas_bds
e
2_patients dical_msg oyota sigha moon
8_god_at|;;s_athei 0 0.01 0.02 0 0.005 o0.01 o

S00°0
T0°0
STO0°0
0’0

Source -- https://maartengr.github.io/BERTopic/getting_started/visualization/visualization.html| 18

https://maartengr.github.io/BERTopic/getting_started/visualization/visualization.html

Each topic vector is represented by a list of words with different weights.

Topic 21
candlda

"Cﬁfﬁiﬁ” yfdp t om Sd S e

t‘*‘m”“ =Itrea tmentphymans
laceb

dlaegntr; ad pyfoidace :Yngd?gngkld"eyp n -Exics

(eatlng effects bacteria

seridietRe LEEN Lo

C 13 ln l C a lsfmrmgfnreylnfectlons liver

medlc

Topic 9

materials s copyright advanced
reilly fvrigrs o ublisher
'_' b ks Writingygu lde P syl offesrms;yn

Ejp ysics ® &

° C Bliver < blology

S0 >

%E ‘z 1olog1cal

chemlstr ypgh b ook

rev1sednutr1t10n price 1ntro uction shipping

Topic 29
fund payment -t S §
finds’s wprivate h e]_ h
E sector patientsdollar 5
medicine ¢ & -cgg?gnamfees l p - 2
reformO 2 - .
income pubhc Q 8

" hospitalsspending canadian doctors

workers servicesP

Topic 61

g‘oé mathematics students visualization atmospheric C
Eg a u S l a51ggrapth
== consortlum : +
geresea rch epsychol OgY1nst1tute0unlverSltleS S
] g g advanced g (]Jqé Q_
el g =
contact’y : ® unlverSlt mode mln B%O

ph % o
f computing au technical 1nst1tut10ns systems”

Source -- https://github.com/ddangelov/Top2Vec

19

https://github.com/ddangelov/Top2Vec

After transforming text into vectors, we can use these vectors for national language

processing tasks, such as sentence/document classification (or clustering).

44444444444+ PRIVATE! Your 2020 Email Account
won $1,000,000 lottery! 4+ 44444444 To claim call
08719180248 to get the lottery money <><><><><-<-<>

A 4

Vector 1
[101121100000110000]

Hi Yen-Chia, may we have our meeting on 5/15 by just
email update to buy some time? if not, zero worries if you

need to meet.

A 4

Vector 2
[01000001111101200]

Would you be willing to meet with me on 3/26 Thursday
when | was in TU Delft after (or before) giving the guest
lecture (10:35am-11:50am)?

v

Vector 3
[0O00000000000001T111]

Build
Model

Text

Vectors

-

Spam

Predictions
/Clustering

<]

Ham

20

We have seen the approach of crafting features manually. But we can use deep learning

to automate feature engineering. What should be the input vectors in this case?

Image Source

s
L

tare o showy and >
thew 0d ety
n to spit 4 N S, Sla
ire Groek schzgo 0.
SPous,
Poge,

Jntormal. 8
1 1o be only

ik
VmigSkiz (%
). 2Mia ALK R
& A L
fruit schie|mi ish ; [< g 3n A RESX N \
), . Botary. o 0 T sy borsant chleimiie] Shzy o A AN N
it w0 O Cppen. as in shiemiel [Amoondler: gtl(lihlsfn v i 75 4 A“:\}\‘{\
do k karpds < the Hebre N Engjialliblg’ M8} / it \
2o + Greel 7:36)] " Name gpdlish - fog,") fﬁ‘/s 4)’\‘k\‘
Botany. of sc P of schiep /;."»"54
P ping,
with d;mc.n?y 'Z),S/" o

XN

years like a dog,

<
L
>
2
Q
5
)
\{\%
~

5

D

8 8 SO, sk,
or

Yiadish sa Pey, 4
aion] Sohlie ren (shu o, © Gy ',4"'5,

l-ﬂ""“‘"a' e aan o iy -~ W w-n o
faki o170 nes) B O s o sk o &y i

. HUEAGON
o) n = %
Poa navng o &

R

N\

https://unsplash.com/photos/YPgTovTiUv4

We can use one-hot encoding. But this approach is inefficient (in terms of computation)

because it creates long vectors with many zeros, which uses a lot of computer memory.

One-hot encoding

0&@6\0(\ 66\ ’\\.\QJ All other possible words
wene the => [0[0[0|0[1/0/0/0|0|0|0|0]..|0
Weae cat => |1(0]{0/0{0|0|0|0|0|0(0|0]..|0
wsae sat => [0]0]0(1]0|0|0(0(0[|0|0|0]...|0

Word Embeddings -- https://www.tensorflow.org/text/guide/word_embeddings

https://www.tensorflow.org/text/guide/word_embeddings

Another problem of one-hot encoding is that it does not encode similarity. For example,

the cosine similarity between two one-hot encoded vectors are always zero.

dot product = w/l;;Wege 0

< Weat * Weqt >

CosineSimilarity(W;q¢, Weqt) = cos(0) = Tl
cat sat

length of w,,;

0
=[1 0 0 0 0]-|0f=0

1

0

- Angle 6 close to © - Angle 6 close to 90 - Angle 6 close to 180
- Cos(B) close to 1 - Cos(8) close to © - Cos(8) close to -1
- Similar vectors - Orthogonal vectors - Opposite vectors

Cosine Similarity -- https://www.learndatasci.com/glossary/cosine-similarity/ 23

https://www.learndatasci.com/glossary/cosine-similarity/

The dot product of two vectors can also be used to measure similarity, which considers

both the angle and the vector lengths. Cosine similarity is a normalized dot product.

Magnitudes of vectors
scaled by angle between them

a = |al[blcos(8)

Source of the graph and more information about the dot product --

https://www.youtube.com/watch?v=C0sPtQ3wX9o

Exercise 8.1: Given the following word embeddings, compute the cosine similarity

between “desk” and “table”, as well as between “desk” and “desks”.

Y
CosineSimilarity(py, p2)
37 desk (1,3)

__ < P1 P2 > dotproduct -

“p1”“p2” desks (2,2)

X210 P1= (x1,¥1)

[X1 V1] -] table (3,1)

— Y21l p, = (x2,52) -
o1 (D2l x
X1Xy T Y1Y2

plate (-3,-1) —17

REEETAN R

251

We can use word embeddings to efficiently represent text as vectors, in which similar

words have a similar encoding in a high-dimensional space.

. . . Word Embeddi
A 4-dimensional embedding o mbEEEnes

® Bus
® Dog ® Train
e Cat

.5 .) e Catbus * Car
cat => 12 | -01 | 43 | 32 2 ® Pet

=

©
mat => |04 | 25 | -09] 05 E

&’8 v e Coff

— ® Paper e Cottee
on == 21 0.3 0.1 0.4 o Water
® Box

oo))))
First dimension

Word Embeddings -- https://www.tensorflow.org/text/guide/word_embeddings 26

https://www.tensorflow.org/text/guide/word_embeddings

Position (e.g., distance and direction) in the word embedding vector space can encode

semantic relations, such as the relation between a country and its capital.

man

- woman
\A.
.~ S~ =

king “~A.

queen

.

Male-Female

walked

O swam
walking @)

/O\>

swimming

Verb Tense

Italy
Canada Spain @

@) g
Turkey ! ! ‘
® ‘ ‘ Rome

P Ottawa Madrid Germany
o .)
Ankara .RuSSla .7
o — merlin
MOSCOV/ S~
Vietnam ®

@) 7 China
o @
‘ Tokyo O} ’

Hanoi i
Beijing

Country-Capital

Source -- https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space

27

https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space

But how can we train the word embeddings? Intuitively, we can represent words by

their context (i.e., the nearby words within a fixed-size window).

...government debt problems turning into | banking | crises as happened in 2009...
...saying that Europe needs unified | banking '\ requlation to replace the hodgepodge...

...India has just given its | banking ' system a shot in the arm...

These context words will be used to represent the word: “banking”

Source -- https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf

28

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf

Word2Vec is a method to train word embeddings by context. The goal is to use the

center word to predict nearby words as accurate as possible, based on probabilities.

We need to maximize these probabilities for all words in the text body

problems turning ' crises as

Y Y \ . J
outside context words center word outside context words
in window of size 2 at positiont in window of size 2

Source -- https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf 29

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf

How is probability related to word vectors? We use the dot product similarity of word

vectors to calculate probabilities, with the help of the softmax function.

softmax function exp (Wg Wt)
wlw, > P(w,lwy) =55 T
4 2.j=1 exp(W; W)

%, compare similarity

Wo Wo Wi Wo Wo
problems turning into banking crises as

\ oo ;
\ J
Y Y Y

outside context words center word outside context words
in window of size 2 at positiont in window of size 2

Source -- https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf 30

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf

The softmax function maps any arbitrary values to a probability distribution.

3 v
v | T
T softmax function exp (WO Wt)
Wy Wt > P(Wolwt) — n T
=1 €Xp(W; we)
J= J
A
The entire denominator is just for normalization s====**""""""" ’
softmax function exXp (X i)
Xi > P(xl) —

=1 exp (%)

an?®

The exponential function makes things positive: exp(x) = e*

Source -- https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf

31

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf

Below is an example of how the softmax function maps numbers to probabilities.

/exp(Z) + exp(1) + exp(O.l)\

2 exp(1) 0.66
1 /exp(Z) + exp(1) + exp(O.l)\ 0.24

01— ewon ___loao.
exp(2) + exp(1) + exp(0.1)

softmax function eXPp (X i)
X; » P(x;) =
A

an?®

Remember that the denominator is just for normalization

More about the softmax function -- https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax 32

https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax

For each word position t = 1, ..., T with window size m, we can adjust the word vectors

(6) to maximize the likelihood function, based on the probability that we calculated.

Likelihood = L(H)—l_[1_[P(Weyj | we; 0)

0 is all variables ‘ t=1 —msjsm

to be optimized J#0
Wt—2 Wt-1 Wt Wti1 Wiy2
problems turning into banking crises as

\ oo ;
\ J
Y Y Y

outside context words center word outside context words
in window of size 2 at positiont in window of size 2

More about Maximum Likelihood Estimation -- https://www.youtube.com/watch?v=Dnéb9fCIUpM

33

https://www.youtube.com/watch?v=Dn6b9fCIUpM

To sum up, below are the high-level ideas for training word embeddings:

We have a large text corpus (i.e., text body) with a long list of words
* Every word is represented by a vector w

* For each position t in the text, determine the center word w; and the

context words w, (i.e., the words that are nearby w;)

Wo Wo Wt Wo Wo

problems turning into banking crises as

 For each word w;, compute the probability of P(w,|w;) using the dot

product similarity of word vectors w, and w;

» Keep adjusting the word vectors to maximize this probability

Mikolov, T., et al. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.

https://arxiv.org/pdf/1301.3781.pdf

%+ Embedding projector - visuali:

C wh

Embedding Projector

DATA

5 tensors found

Word2Vec 10K

Label by Color by
word No color map

Supervise with

word No ignored label
Edit by
word Tag selection as

Load Publish Download

Sphereize data @

Checkpoint: Demo datasets

UMAP T-SNE PCA CUSTOM
Dimension 2D . 3D
Perplexity ®@ —@ 25
Learning
D
rate © 19
Supervise @ 0
Stop Resume Perturb

Iteration: 489

@ How to use t-SNE effectively.

—

X

rojector.tensorflow.org

+

) | Points: 10000 | Dimension: 200 | Selected 101 points

Wwaters
streams
Wemazon rivers
£ |Ia‘kes
1}
PaINSES < owlands
golateally slopes
Wdeserts
: ~fros(
peaks ltemperate freezing
i arid "r'eci itation
wilderness volcano ‘P 'Enow
" lacier
drainage Ba's aag
shelter ‘Fa"'],storm‘)
flooding) " Vegetation
’ limestone
_ (soil -
forests
hurricane _deforestation
falls
receives
habitat
forest
Ltrees
kills
@drought
“crops
{ crop
damage

beatles

shadow
.

{_hemisphere

cloud
@rolling
covered
pollution
water
heavy

rain

word rain

count 513
Wnre;

fires

sunlight

heat

Playground for word embeddings -- http://projector.tensorflow.org/

Isolate 101 Clear
points selection
by
Search * word

neighbors @ -@

10C

distance

Nearest points in the original space:

BOOKMARKS (0) @

COSINE EUCLIDEAN

0.457
0.478
0.482
0.553
0.563
0.570
0.577
0.588
0.588
0.597
0.601
0.607
0.612
0.616
0.618
0.629

A

35

http://projector.tensorflow.org/

Word embeddings represent words in vectors.

But how to represent sentences in vectors?

36

We can stack all the word vectors into a matrix, where each column means a dimension

of the word vector, and the number of rows means sentence length.

First dimension

'‘google’, 'headquarter’,
['go0g au of word vector

'mountain’, 'view',

‘amphitheatre’, 'pkwy’,

1012 —212 122 - - 4 google
‘ I| 0.21 —421 - - : headquarter

'mountain’, 'view', 'ca’, 'unveil’,
'new’, 'android’, 'phone’,
'‘consumer’, 'electronic’, 'show’,

'sundar’, 'pichai’, 'say’,

'keynote’, 'user’, 'love’, 'new’,

‘android’, '‘phone’]

37

For a deep feedforward network (or convolutional neural network), all inputs need to

have the same size. But sentences can have different length. So, what should we do?

Mini-batch of
6 sentences

Numbers that
represent a sentence

38

We can drop the parts that are too long and pad the parts that are too short with zeros.

Modified mini-batch
of 6 sentences

Pad these parts
with zeros

Drop these
numbers J

39

After we make sure that all input data have the same size, we can put them into deep

neural networks for different tasks, such as sentence/document classification.

wait [T T 1 [| [
ol N R s nin=
o e
video | | | | [| 4 __ ..
and R] %
do e I I e v Ay
n't __,,__
rent | | | | | | b n
it _
I | | | I I |
n x k representation of Convolutional layer with Max-over-time Fully connected layer
- sentence with static and multiple filter widths and pooling with dropout and
n non-static channels feature maps softmax output
u
Mini-batches Figure 1: Model architecture with two channels for an example sentence.

Kim, Y. (2014). Convolutional neural networks for sentence classification. EMNLP.

40

https://arxiv.org/abs/1408.5882

We can also use the recurrent neural network (RNN) to takes inputs with various lengths.

Recurrent connections are shown in the red cyclic edges (and unfolded into red arrows).

Output Output 1 Output 2 Output ... Output T
] I R
-
/ ~N
[Hidden Hidden Hidden Hidden
l layers layers 1 layers 2 layers T
\
Input Input 1 Input 2 Input ... Input T

Source -- https://d2l.ai/chapter_recurrent-neural-networks/index.html 41

https://d2l.ai/chapter_recurrent-neural-networks/index.html

Typically, we feed features to the deep neural net, but we feed observations (for each

time step) to the recurrent neural net. Notice that the input X below is transposed.

Output 1 Output 2 Output ... Output T
Hidden Hidden Hidden
—> —> —>
layers 1 layers 2 layers T
4 ‘ ‘ 4
Input 1 Input 2 Input ... Input T

T
-xil) x£2)

Xo X2

OO,

| Xp

['google’, 'headquarter’,

Xp

observation at
time T: x(M

xfT)_

An example for natural language processing:

* Feature: the word embedding dimensions

« Observation: the word at position T in a sentence

We can combine RNNs into a sequence-to-sequence (Seg2Seq) model for sentence

classification or sentiment analysis. In this case, the output sequence has only one label.
positive

Sentence
Representation

We can just use the output from the
final layer to represent the sentence

RNN

enjoyed

Source -- https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture05-rnnlm.pdf

43

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture05-rnnlm.pdf

Seq2Seq models are flexible in the input and output sizes. The rectangles in the graph

below mean vectors, red rectangles mean inputs, and blue rectangles mean outputs.

one to one one to many many to one many to many many to many

e.g., image e.g., image e.g., sentence e.g., machine e.g., video frame
classification captioning classification translation classification

Source -- http://karpathy.github.io/2015/05/21/rnn-effectiveness/

44

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

We can generalize the Seq2Seq model further to the encoder-decoder structure, where

the encoder produces an encoded representation of the entire input sequence.

Encoder Decoder

. A

lls regardent : <eos>

ot
! ! ! ! *_,QUA 'y FF 1]

They are watching : <eos>

<bos> lls regardent
v
Encoded Representation

Source -- https://d2l.ai/chapter_recurrent-modern/seg2seq.html

45

https://d2l.ai/chapter_recurrent-modern/seq2seq.html

The problem of using only the final encoder output is that it is hard for the model to

remember previous information. Instead, we can have the model considers all outputs.

positive

Sentence
Representation

We can take the mean/max of the encoder
outputs or even train a one-layer neural net
to weight the encoder outputs.

@000

\ 4

A4
—|/0000

\4

A4

Y

A4
000

RNN Encoder

:

lot

:

enjoyed the movie

—(000@

! !

overall

Source -- https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture05-rnnlm.pdf 46

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture05-rnnlm.pdf

But, using the same weights may be insufficient, as we may want the weights to change

according to different inputs. We can use the attention mechanism to achieve this.

positive

Sentence
Representation

7

Attention Layer

A4

A4

V

A4
—{ 0000

A4

A4

—|/0000

%

lot

:

enjoyed the movie

!

Yang, Z., et al. (2016, June). Hierarchical attention networks for document classification. NAACL conference. 47

https://aclanthology.org/N16-1174/

Attention is weighted averaging, which lets you do lookups!

Attention is just a weighted average — this is very powerful if the weights are learned!

In attention, the

matches all keys softly,

to a weight between 0 and 1. The keys’ values
are multiplied by the weights and summed.

keys values Weighted

ki
k2

query
q k3
k4
k5

Sum
vl
V2
output
o T
v4
v5

In a lookup table, we have a table of keys
that map to values. The matches
one of the keys, returning its value.

keys values

a vl
b v2
query
d C v3
output
d vdi —> v4
e v5

The figure is from the Stanford CS224N course -- https://web.stanford.edu/class/cs224n/slides/cs224n-2024-lecture08-transformers.pdf

48

https://web.stanford.edu/class/cs224n/slides/cs224n-2024-lecture08-transformers.pdf

Sentence
Representation

Step 5: Compute attention-weighted sum of encoder output:

T
* le=10th:
Prediction _
Step 4: Compute the attention distribution using softmax:

* [aq a, ... ar] = softmax([e; e, ... er])

Step 3: Compute attention scores (dot product similarity):

e e =q u, IEEREIEE
Step 2: Transform encoder outputs (dimension reduction):

© u = tanh(Wh)

\

q

o O @ O o : :
o ° o |o| |o i Step 1: Get the encoder output values (from the RNN):
0 o[le[o[’|® -

o (<) o (¢ (<) t

Query vector
(come from the !
orevious There are many ways of doing step 2 and 3
prediction) il a m’ entarté

Source -- https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture07-final-project.pdf

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture07-final-project.pdf

Sequence-to-sequence with attention

Attention he

output T :
Concatenate attention output
c e ~ . .
So . s y1 <+ with decoder hidden state, then
* — - | T :: “‘_ "". A
e 3 A use to compute ¥, as before
8 .: :. -_- .
©
c
9o v
e
]
O
2 o0
<
w
D
] o) @ @) O 3
EE o o .|o ® J|o =3
O & o |o®)) ’lo @
S) o 0) o) =
T T -
il a m’ entarté <START>
\ v J

Source sentence (input)

The figure is from the Stanford CS224N course -- https://web.stanford.edu/class/cs224n/slides/cs224n-2024-lecture08-transformers.pdf 50

https://web.stanford.edu/class/cs224n/slides/cs224n-2024-lecture08-transformers.pdf

Sequence-to-sequence with attention

Attention hit
output

—

s sy T 5
o 5 P S Y2
- S 3 N
= 5 H %
— — |
< L
e
c
S u
2 2
o O
o O
z (V)]
O
()]
| -
© e (o (o] |o@ o] |o Q
EE o o [o ® Jo o) 3
O o ‘|e[o 0 lo[lo ®
S) o) 0 o) o) =
T T -
il a m’ entarté <START> he
N J

Y
Source sentence (input)

The figure is from the Stanford CS224N course -- https://web.stanford.edu/class/cs224n/slides/cs224n-2024-lecture08-transformers.pdf 51

https://web.stanford.edu/class/cs224n/slides/cs224n-2024-lecture08-transformers.pdf

Sequence-to-sequence with attention

Attention me
output

'
o o
o et
' %o,
CRS
. e

.
o
o
-
o NN
Od . .,
B 5 .
o .
0
0 . o,
K o .
8 : 0
. g o,
o o .,
B o .
8 . .
o o 0
0 o o,
o ” 0
8 o
l'ﬂ" :'1

—

)
7 W

Attention
distribution

Attention
scores

5

o o o) o) 0 Q
T Z ® Jol ol .|o S
S o ’lo o 0 @
S o 0 O 0 -
=

T 2

entarté <START> he hit
\ y,

Source sentence (input)

The figure is from the Stanford CS224N course -- https://web.stanford.edu/class/cs224n/slides/cs224n-2024-lecture08-transformers.pdf 52

https://web.stanford.edu/class/cs224n/slides/cs224n-2024-lecture08-transformers.pdf

Sequence-to-sequence with attention

Attention with
output T

Attention
distribution

Attention
scores

O
o ()]
Q () (@) 8
g %) o Q
S o ® © 2
o @ o =)

2

il a m’ entarté <START> he hit me
N J
Y

Source sentence (input)

The figure is from the Stanford CS224N course -- https://web.stanford.edu/class/cs224n/slides/cs224n-2024-lecture08-transformers.pdf 53

https://web.stanford.edu/class/cs224n/slides/cs224n-2024-lecture08-transformers.pdf

Sequence-to-sequence with attention

Attention aq
output T

Attention
distribution

Attention
scores

O

o ()]
Q () o 8
B % o O Q
S o ® 0 2
i, @ o =)
2

il a m’ entarté <START> he hit me with
N J
Y

Source sentence (input)

The figure is from the Stanford CS224N course -- https://web.stanford.edu/class/cs224n/slides/cs224n-2024-lecture08-transformers.pdf 54

https://web.stanford.edu/class/cs224n/slides/cs224n-2024-lecture08-transformers.pdf

There is a more complicated attention mechanism, “multi-head self attention”, which is

the building block of the Transformer network architecture.

Scaled Dot-Product Attention

|

MatMul

t

SoftMax

t

Mask (opt.)

!

Scale

t

MatMul

|
Q

1

K

V

t

Linear

Concat

A

Multi-Head Attention

Scaled Dot-Product
Attention

tl ul ul

v f
Linear u Linear Lin

Qutput
Probabilities

r
Add & Norm
Feed
Forward
e ~\ Add & Norm
_ :
kel i Multi-Head
Feed Attention
Forward D) Nx
—
Nix Add & Norm
f—>| Add & Norm l Masked
Multi-Head Multi-Head
Attention Attention
L S 1
o J L —'
Positional & @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Vaswani, A., Shazeer, et al. (2017). Attention is all you need. Advances in neural information processing systems.

55

https://arxiv.org/pdf/1706.03762.pdf

Take-Away Messages

* We need to represent text as numbers for Natural Language Processing tasks.

* We can train word embeddings (vectors) to map words into data points in a high dimensional space.
« One way to train word embeddings is to use the context (e.g., nearby words) to represent a word.

* Word embeddings also encode semantics, which means similar words are close to each other.

« Cosine similarity and dot product can be used to measure how vectors are close to each other.

« Softmax is a commonly used function in deep learning to map arbitrary values to probabilities.

* Recurrent Neural Network can take inputs with various lengths (e.g., sentences).

« Attention helps the model learn information from the past and focus on a certain part of the source.

Questions?

