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This lecture shows a typical data science 

pipeline and recaps data cleaning techniques.
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• Literature review

• Domain knowledge gaps

• Survey/interview study

• Community outreach

• …

Frame Problems

• Get data from infrastructure

• Build data collection tools

• Scrape data online

• Annotate data

• …

Collect Data

• Impute missing data

• Filter/transform data

• Align multi-modal data

• Check data quality

• …

Preprocess Data

• Visualize and plot data

• Find patterns and trends

• Formulate hypotheses

• Build data exploration tools

• …

Explore Data

• Extract features

• Fit computational models

• Validate hypotheses

• Evaluate results

• …

Model Data

• Build data products

• Communicate findings

• Research user behaviors

• Study social impact

• …

Deploy Models

What people typically think : The reality of the data science pipeline:

Data Science Pipeline



This course uses existing scenarios and cases with well-defined 

problems. However, in the real world, we need to define and frame the problems first.
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Frame Problems

Example: understanding parking patterns and law enforcement -- https://responsiblesensinglab.org/projects/scan-cars

https://responsiblesensinglab.org/projects/scan-cars
https://responsiblesensinglab.org/projects/scan-cars
https://responsiblesensinglab.org/projects/scan-cars


This course assumes that someone has collected the data for you. In 

reality, you may need to collect data using sensors, crowdsourcing, mobile apps, etc.
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Collect Data

GGD Amsterdam Data Portal Prolific Tool for Data Annotation Mobile App Data Collection

https://data.amsterdam.nl/
https://www.prolific.co/
https://smellpgh.org/


There are also other sources for getting public datasets, such as 

Hugging Face, Zenodo, Google Dataset Search, government websites, etc.
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Collect Data

Hugging Face Zenodo Google Dataset Search

https://huggingface.co/
https://zenodo.org/
https://datasetsearch.research.google.com/


This course will focus on pandas, which is a very handy Python library 

for preprocessing structured data. We will cover the following techniques:

710 minutes to pandas -- https://pandas.pydata.org/docs/user_guide/10min.html

Preprocess Data

• Filter unwanted data

• Aggregate data (e.g., sum)

• Group data based on a column

• Sort rows based on a column

• Concatenate data frames

• Merge and join data frames

• Quantize continuous values into bins

• Scale column values

• Resample time series data

• Roll time series data in a window

• Apply a transformation function

• Use regular expressions

• Drop rows or columns

• Treat missing values

https://pandas.pydata.org/docs/user_guide/10min.html
https://pandas.pydata.org/docs/user_guide/10min.html
https://pandas.pydata.org/docs/user_guide/10min.html
https://pandas.pydata.org/docs/user_guide/10min.html
https://pandas.pydata.org/docs/user_guide/10min.html


D["population"]>500000D[                      ]

city population

Amsterdam 853,312

Rotterdam 639,587

Den Haag 526,439

Utrecht 344,384

Eindhoven 227,100

Tilburg 214,157

city population

Amsterdam 853,312

Rotterdam 639,587

Den Haag 526,439

D
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Filtering can reduce a set of data based on specific criteria. For 

example, the left table can be reduced to the right table using a population threshold.

Preprocess Data

More about filtering data -- https://pandas.pydata.org/docs/user_guide/indexing.html

city population

Amsterdam True

Rotterdam True

Den Haag True

Utrecht False

Eindhoven False

Tilburg False

https://pandas.pydata.org/docs/user_guide/indexing.html
https://pandas.pydata.org/docs/user_guide/indexing.html
https://pandas.pydata.org/docs/user_guide/indexing.html
https://pandas.pydata.org/docs/user_guide/indexing.html
https://pandas.pydata.org/docs/user_guide/indexing.html
https://pandas.pydata.org/docs/user_guide/indexing.html


city population

Amsterdam 853,312

Rotterdam 639,587

Den Haag 526,439

Utrecht 344,384

Eindhoven 227,100

Tilburg 214,157

population 467,496

D

D["population"].mean()
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Aggregation reduces a set of data to a descriptive statistic. For 

example, the left table is reduced to a single number by computing the mean value.

Preprocess Data

More about aggregation -- https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#computations-descriptive-stats

https://pandas.pydata.org/pandas-docs/stable/reference/frame.html
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html


D

D.groupby("province")
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city province population

Amsterdam Noord-Holland 853,312

Rotterdam Zuid-Holland 639,587

Utrecht Utrecht 344,384

Eindhoven Noord-Brabant 227,100

Den Haag Zuid-Holland 526,439

Tilburg Noord-Brabant 214,157

province population

Noord-Holland 853,312

Zuid-Holland 1,166,026

Utrecht 344,384

Noord-Brabant 441,257

Grouping divides a table into groups by column values, which can be 

chained with data aggregation to produce descriptive statistics for each group.

Preprocess Data

More about grouping -- https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html

province population city

Noord-Holland 853,312 Amsterdam

Zuid-Holland 639,587
526,439

Rotterdam
Den Haag

Utrecht 344,384 Utrecht

Noord-Brabant 227,100
214,157

Eindhoven
Tilburg

.sum()

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html
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city population

Eindhoven 227,100

Den Haag 526,439

Tilburg 214,157

Rotterdam 639,587

Amsterdam 853,312

Utrecht 344,384

D

D.sort_values(by=["population"])

city population

Tilburg 214,157

Eindhoven 227,100

Utrecht 344,384

Den Haag 526,439

Rotterdam 639,587

Amsterdam 853,312

Sorting rearranges data based on values in a column, which can be 

useful for inspection. For example, the right table is sorted by population.

Preprocess Data

More about sorting -- https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sort_values.html

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sort_values.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sort_values.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sort_values.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sort_values.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sort_values.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sort_values.html
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city population

Amsterdam 853,312

Rotterdam 639,587

Den Haag 526,439

city population

Amsterdam 853,312

Rotterdam 639,587

Den Haag 526,439

Utrecht 344,384

Eindhoven 227,100

Tilburg 214,157

city population

Utrecht 344,384

Eindhoven 227,100

Tilburg 214,157

A

B
pandas.concat([A, B])

Concatenation combines multiple datasets that have the same 

variables. For example, the two left tables can be concatenated into the right table.

More about concatenation -- https://pandas.pydata.org/docs/reference/api/pandas.concat.html

Preprocess Data

https://pandas.pydata.org/docs/reference/api/pandas.concat.html
https://pandas.pydata.org/docs/reference/api/pandas.concat.html
https://pandas.pydata.org/docs/reference/api/pandas.concat.html
https://pandas.pydata.org/docs/reference/api/pandas.concat.html
https://pandas.pydata.org/docs/reference/api/pandas.concat.html
https://pandas.pydata.org/docs/reference/api/pandas.concat.html
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• Inner join • Left (outer) join

• Right (outer) join• Outer join

Merging and joining is a common method (in relational databases) to 

merge multiple data tables which have overlapping set of instances.

Figure source -- https://en.wikipedia.org/wiki/Join_(SQL)

Preprocess Data

https://en.wikipedia.org/wiki/Join_(SQL)
https://en.wikipedia.org/wiki/Join_(SQL)
https://en.wikipedia.org/wiki/Join_(SQL)
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city population

Amsterdam 853,312

Rotterdam 639,587

Den Haag 526,439

Utrecht 344,384

Eindhoven 227,100

Tilburg 214,157

city air_quality

Amsterdam 42.4

Rotterdam 40.9

Den Haag 41.1

Utrecht 41.4

Eindhoven 43.8

Zwolle 40.9

city population air_quality

Amsterdam 853,312 42.4

Rotterdam 639,587 40.9

Den Haag 526,439 41.1

Utrecht 344,384 41.4

Eindhoven 227,100 43.8

A.merge(B, how="inner", on="city")

A

B

• Inner join

Use “city” as the key to merge A and B

More about merging -- https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.merge.html

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.merge.html
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city population

Amsterdam 853,312

Rotterdam 639,587

Den Haag 526,439

Utrecht 344,384

Eindhoven 227,100

Tilburg 214,157

city air_quality

Amsterdam 42.4

Rotterdam 40.9

Den Haag 41.1

Utrecht 41.4

Eindhoven 43.8

Zwolle 40.9

A.merge(B, how="left", on="city")

A

B

• Left join

city population air_quality

Amsterdam 853,312 42.4

Rotterdam 639,587 40.9

Den Haag 526,439 41.1

Utrecht 344,384 41.4

Eindhoven 227,100 43.8

Tilburg 214,157 NaN

Use “city” as the key to merge A and B

More about merging -- https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.merge.html

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.merge.html
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city population

Amsterdam 853,312

Rotterdam 639,587

Den Haag 526,439

Utrecht 344,384

Eindhoven 227,100

Tilburg 214,157

city air_quality

Amsterdam 42.4

Rotterdam 40.9

Den Haag 41.1

Utrecht 41.4

Eindhoven 43.8

Zwolle 40.9

A.merge(B, how="right", on="city")

A

B

• Right join

city population air_quality

Amsterdam 853,312 42.4

Rotterdam 639,587 40.9

Den Haag 526,439 41.1

Utrecht 344,384 41.4

Eindhoven 227,100 43.8

Zwolle NaN 40.9

Use “city” as the key to merge A and B

More about merging -- https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.merge.html

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.merge.html
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city population

Amsterdam 853,312

Rotterdam 639,587

Den Haag 526,439

Utrecht 344,384

Eindhoven 227,100

Tilburg 214,157

city air_quality

Amsterdam 42.4

Rotterdam 40.9

Den Haag 41.1

Utrecht 41.4

Eindhoven 43.8

Zwolle 40.9

A.merge(B, how="outer", on="city")

A

B

• Outer join

city population air_quality

Amsterdam 853,312 42.4

Rotterdam 639,587 40.9

Den Haag 526,439 41.1

Utrecht 344,384 41.4

Eindhoven 227,100 43.8

Tilburg 214,157 NaN

Zwolle NaN 40.9

Use “city” as the key to merge A and B

More about merging -- https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.merge.html

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.merge.html
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name age

Jantje 8

Piet 16

Maria 22

Renske 34

Donald 65

name age

Jantje 1-20

Piet 1-20

Maria 21-50

Renske 21-50

Donald 51+

bin = [0,20,50,200]
L = ["1-20","21-50","51+"]

pandas.cut(D["age"], bin, labels=L)

D

Quantization transforms a continuous set of values (e.g., integers) 

into a discrete set (e.g., categories). For example, age is quantized to age range.

More about quantization -- https://pandas.pydata.org/docs/reference/api/pandas.cut.html

Preprocess Data

More%20about%20quantization%20--%20https:/pandas.pydata.org/docs/reference/api/pandas.cut.html
More%20about%20quantization%20--%20https:/pandas.pydata.org/docs/reference/api/pandas.cut.html
More%20about%20quantization%20--%20https:/pandas.pydata.org/docs/reference/api/pandas.cut.html
More%20about%20quantization%20--%20https:/pandas.pydata.org/docs/reference/api/pandas.cut.html
More%20about%20quantization%20--%20https:/pandas.pydata.org/docs/reference/api/pandas.cut.html
More%20about%20quantization%20--%20https:/pandas.pydata.org/docs/reference/api/pandas.cut.html
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population air_quality

853,312 42.4

639,587 40.9

526,439 41.1

344,384 41.4

227,100 43.8

214,157 39.1

population air_quality

1.5273 0.6039

0.6812 -0.3496

0.2333 -0.2225

-0.4874 -0.0318

-0.9516 1.4938

-1.0029 -1.4938

D
(D-D.mean()) / D.std()

population air_quality

1 0.7021

0.6656 0.3830

0.4886 0.4255

0.2037 0.4894

0.0203 1

0 0

(D-D.min()) / (D.max()-D.min())

• Z-score scaling (representing how many 
standard deviations from the mean)

• Min-max scaling (making the value 
range between 0 and 1)

Scaling transforms variables to have another distribution, which puts 

variables at the same scale and makes the data work better on many models.

More about scaling data -- https://scikit-learn.org/stable/modules/preprocessing.html

Preprocess Data

https://scikit-learn.org/stable/modules/preprocessing.html
https://scikit-learn.org/stable/modules/preprocessing.html
https://scikit-learn.org/stable/modules/preprocessing.html
https://scikit-learn.org/stable/modules/preprocessing.html
https://scikit-learn.org/stable/modules/preprocessing.html
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timestamp v1

2016-10-31 07:30:00 52.60

2016-10-31 08:30:00 48.30

2016-10-31 08:53:20 44.20

2016-10-31 09:30:00 31.10

You can resample time series data (i.e., the data with time stamps) to 

a different frequency (e.g., hourly) using different aggregation methods (e.g., mean).

More information about the “resample” function -- https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.resample.html

Preprocess Data

D.resample("60Min", label="right").mean()

timestamp v1

2016-10-31 08:00:00 52.60

2016-10-31 09:00:00 46.25

2016-10-31 10:00:00 31.10

D

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.resample.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.resample.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.resample.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.resample.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.resample.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.resample.html
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timestamp v1

2016-10-31 08:00:00 52.60

2016-10-31 09:00:00 46.25

2016-10-31 10:00:00 31.10

2016-10-31 11:00:00 12.21

2016-10-31 12:00:00 28.64

You can use the rolling window operation to transform time series 

data using different aggregation methods (e.g., sum).

More information about the “rolling” function -- https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.rolling.html

Preprocess Data

D["v2"]=D["v1"].rolling(window=3).sum()

timestamp v2

2016-10-31 08:00:00 NaN

2016-10-31 09:00:00 NaN

2016-10-31 10:00:00 129.95

2016-10-31 11:00:00 89.56

2016-10-31 12:00:00 71.95

D

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.rolling.html
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wind_mph

3.6

NaN

5.1

You can apply a transformation to rows or columns in the data frame. 

More information about the “apply” function -- https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.apply.html

Preprocess Data

def f(x):
    if pd.isna(x): return None   
    else: return x<5
D["is_calm"] = D["wind_mph"].apply(f)

wind_mph is_calm

3.6 True

NaN None

5.1 False

wind_deg

343

351

359

5

41

25

⋮

wind_deg wind_sine

343 -0.292372

351 -0.156434

359 -0.017452

5 0.087156

41 0.656059

25 0.422618

⋮ ⋮

D["wind_sine"] = np.sin(np.deg2rad(D["wind_deg"]))

def f(x):
    return numpy.sin(numpy.deg2rad(x))
D["wind_sine"] = D["wind_deg"].apply(f)

Very slow if you have a lot of rows!

Better to transform the entire column directly!

D

D

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.apply.html
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To extract data from text or match text patterns, you can use regular 

expression, which is a language to specify search patterns.

More information about regular expressions -- https://docs.python.org/3/library/re.html

Preprocess Data

venue

WACV_2023

WACV

2023NeurIPS

CVPR2022

D["year"] = D["venue"].str.extract(r'([0-9]{4})')

venue year

WACV_2023 2023

WACV NaN

2023NeurIPS 2023

CVPR2022 2022

D This means matching 
pattern with 4 digits

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
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city population

Amsterdam 853,312

Rotterdam 639,587

Den Haag 526,439

We can drop data that we do not need, such as duplicate data 

records or those that are irrelevant to our research question.

pandas.drop(columns=["year"])

city population year

0 Amsterdam 853,312 2018

1 Rotterdam 639,587 2018

2 Den Haag 526,439 2018

3 Utrecht 344,384 2018

4 Eindhoven 227,100 2018

5 Amsterdam 862,965 2019

6 Utrecht 344,384 2018

city population year

Amsterdam 853,312 2018

Rotterdam 639,587 2018

Den Haag 526,439 2018

city population year

0 Amsterdam 853,312 2018

1 Rotterdam 639,587 2018

2 Den Haag 526,439 2018

3 Utrecht 344,384 2018

4 Eindhoven 227,100 2018

pandas.drop([5, 6])

More information on dropping data -- https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.drop.html

Preprocess Data

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.drop.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.drop.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.drop.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.drop.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.drop.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.drop.html
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city population air_quality

Amsterdam 853,312 42.4

Rotterdam 639,587 40.9

Den Haag 526,439 41.1

Utrecht 344,384 41.4

Eindhoven 227,100 43.8

Tilburg 214,157

city population

Amsterdam 853,312

Rotterdam 639,587

Den Haag 526,439

Utrecht 344,384

Eindhoven 227,100

Tilburg 214,157

city population air_quality

Amsterdam 853,312 42.4

Rotterdam 639,587 40.9

Den Haag 526,439 41.1

Utrecht 344,384 41.4

Eindhoven 227,100 43.8

drop column

drop row

We can either drop the rows (i.e., the records/observations) or the 

columns (i.e., the variables/attributes) that contain the missing values.

More information on dropping data -- https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html

Preprocess Data

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html


city population air_quality

Amsterdam 853,312 42.4

Rotterdam 639,587 40.9

Den Haag 526,439 41.1

Utrecht 344,384 41.4

Eindhoven 227,100 43.8

Tilburg 214,157 41.92
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city population air_quality

Amsterdam 853,312 42.4

Rotterdam 639,587 40.9

Den Haag 526,439 41.1

Utrecht 344,384 41.4

Eindhoven 227,100 43.8

Tilburg 214,157

constant 
imputation

mean 
imputation

city population air_quality

Amsterdam 853,312 42.4

Rotterdam 639,587 40.9

Den Haag 526,439 41.1

Utrecht 344,384 41.4

Eindhoven 227,100 43.8

Tilburg 214,157 -1

We can replace the missing values (i.e., imputation) with a constant, 

mean, median, or the most frequent value along the same column.

More information univariate imputation -- https://scikit-learn.org/stable/modules/impute.html#univariate-feature-imputation

Preprocess Data

https://scikit-learn.org/stable/modules/impute.html
https://scikit-learn.org/stable/modules/impute.html
https://scikit-learn.org/stable/modules/impute.html
https://scikit-learn.org/stable/modules/impute.html
https://scikit-learn.org/stable/modules/impute.html
https://scikit-learn.org/stable/modules/impute.html
https://scikit-learn.org/stable/modules/impute.html
https://scikit-learn.org/stable/modules/impute.html
https://scikit-learn.org/stable/modules/impute.html
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city population (𝑋) air_quality (𝑦)

Amsterdam 853,312 42.4

Rotterdam 639,587 40.9

Den Haag 526,439 41.1

Utrecht 344,384 41.4

Eindhoven 227,100 43.8

Tilburg 214,157

𝑦 = 𝐹(𝑋)

city population (𝑋) air_quality (𝑦)

Amsterdam 853,312 42.4

Rotterdam 639,587 40.9

Den Haag 526,439 41.1

Utrecht 344,384 41.4

Eindhoven 227,100 43.8

Tilburg 214,157 42.46

We can model missing values, where 𝑦 is the variable/column that 

has the missing values, 𝑋 means other variables, and 𝐹 is a regression function.

More information on multivariate imputation -- https://scikit-learn.org/stable/modules/impute.html#multivariate-feature-imputation

Preprocess Data

https://scikit-learn.org/stable/modules/impute.html
https://scikit-learn.org/stable/modules/impute.html
https://scikit-learn.org/stable/modules/impute.html
https://scikit-learn.org/stable/modules/impute.html
https://scikit-learn.org/stable/modules/impute.html
https://scikit-learn.org/stable/modules/impute.html
https://scikit-learn.org/stable/modules/impute.html
https://scikit-learn.org/stable/modules/impute.html
https://scikit-learn.org/stable/modules/impute.html
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MCAR
Missing Completely At Random:

• Missing data is a completely 

random subset (no relations) 

of the entire dataset.

Link to source

MAR
Missing at Random:

• Missing data is only related to 

variables other than the one 

having missing data.

Link to source

40% missing 
(treatment group)

5% missing 
(placebo group)

MNAR
Missing Not At Random:

• Missing data is related to the 

variable that has the missing 

data. (e.g., sensitive questions)

Different missing data may require different data cleaning methods. 

Missing Not At Random is a big problem and cannot be solved simply with imputation.

https://aph-qualityhandbook.org/set-up-conduct/process-analyze-data/3-2-quantitative-research/3-2-2-data-analysis/handling-missing-data/

Preprocess Data

https://www.wisbar.org/NewsPublications/WisconsinLawyer/Pages/Article.aspx?Volume=90&Issue=2&ArticleID=25387
https://www.wsj.com/articles/a-placebo-for-pain-reliefeven-when-you-know-its-not-real-11579525202
https://aph-qualityhandbook.org/set-up-conduct/process-analyze-data/3-2-quantitative-research/3-2-2-data-analysis/handling-missing-data/
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You really need to practice coding a lot to 

know and internalize how these things work!

• Pandas exercises on GitHub

• Pandas exercises on Kaggle

• Pandas exercises on W3Schools

• Pandas exercises by UC Berkeley School of Information

• Pandas exercises on GeeksforGeeks

• Pandas exercises on w3resource

https://github.com/guipsamora/pandas_exercises
https://github.com/guipsamora/pandas_exercises
https://www.kaggle.com/code/icarofreire/pandas-24-useful-exercises-with-solutions
https://www.kaggle.com/code/icarofreire/pandas-24-useful-exercises-with-solutions
https://www.w3schools.com/python/pandas/pandas_exercises.asp
https://www.w3schools.com/python/pandas/pandas_exercises.asp
https://ischoolonline.berkeley.edu/blog/python-pandas-practice-problems/
https://ischoolonline.berkeley.edu/blog/python-pandas-practice-problems/
https://www.geeksforgeeks.org/pandas-practice-excercises-questions-and-solutions/
https://www.geeksforgeeks.org/pandas-practice-excercises-questions-and-solutions/
https://www.w3resource.com/python-exercises/pandas/index.php
https://www.w3resource.com/python-exercises/pandas/index.php


30The Netherlands in Numbers -- https://longreads.cbs.nl/the-netherlands-in-numbers-2022/

Information visualization is a good way for both experts and 

laypeople to explore data and gain insights.

Explore Data

https://longreads.cbs.nl/the-netherlands-in-numbers-2022/
https://longreads.cbs.nl/the-netherlands-in-numbers-2022/
https://longreads.cbs.nl/the-netherlands-in-numbers-2022/
https://longreads.cbs.nl/the-netherlands-in-numbers-2022/
https://longreads.cbs.nl/the-netherlands-in-numbers-2022/
https://longreads.cbs.nl/the-netherlands-in-numbers-2022/
https://longreads.cbs.nl/the-netherlands-in-numbers-2022/
https://longreads.cbs.nl/the-netherlands-in-numbers-2022/
https://longreads.cbs.nl/the-netherlands-in-numbers-2022/
https://longreads.cbs.nl/the-netherlands-in-numbers-2022/
https://longreads.cbs.nl/the-netherlands-in-numbers-2022/


31The Seaborn Library for Statistical Data Visualization -- https://seaborn.pydata.org/

You can use the Python seaborn library (based on matplotlib) to 

quickly plot and explore structured data. 

Explore Data

https://seaborn.pydata.org/


32Plotly Open Source Graphing Library for Python -- https://plotly.com/python/

You can use the Python Plotly library to build interactive visualizations. Explore Data

https://plotly.com/python/


33Voyant Tools -- https://voyant-tools.org/

You can use the Voyant Tools to explore text data. Explore Data

https://voyant-tools.org/
https://voyant-tools.org/
https://voyant-tools.org/
https://voyant-tools.org/
https://voyant-tools.org/


34Source: https://huggingface.co/tasks

This course will teach you techniques for modeling structured, text, 

and image data through three modules from a practical point of view.

Model Data

Source: https://smellpgh.org/

https://huggingface.co/tasks
https://huggingface.co/tasks
https://huggingface.co/tasks
https://smellpgh.org/
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LeCun et al. 1998. Gradient-based learning applied to document recognition. IEEE.

One example of image classification is optical character recognition, 

such as recognizing digits from hand-written images.

Model Data
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Barred Owl American Robin American Crow

Rufous Hummingbird Rock Pigeon Canada Goose

A more complicated image classification task is fine-grained 

categorization, such as categorizing the types of birds.

Retrieved from https://ebird.org

Model Data

https://ebird.org/
https://ebird.org/


37Retrieved from https://www.rottentomatoes.com/m/star_wars_the_last_jedi

One example of text classification is sentiment analysis, such as 

identifying emotions from movie reviews.

Model Data

https://www.rottentomatoes.com/m/star_wars_the_last_jedi
https://www.rottentomatoes.com/m/star_wars_the_last_jedi
https://www.rottentomatoes.com/m/star_wars_the_last_jedi
https://www.rottentomatoes.com/m/star_wars_the_last_jedi
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Background

Purpose

Method

Finding

Other

For successful infection, viruses must recognize their respective host 
cells. A common mechanism of host recognition by viruses is to 
utilize a portion of the host cell as a receptor. Bacteriophage Sf6, 
which infects Shigella flexneri, uses lipopolysaccharide as a primary 
receptor and then requires interaction with a secondary receptor, a 
role that can be fulfilled by either outer membrane proteins (Omp) A 
or C. Our previous work showed that specific residues in the loops of 
OmpA mediate Sf6 infection. To better understand Sf6 interactions 
with OmpA loop variants, we determined the kinetics of these 
interactions through the use of biolayer interferometry, an optical 
biosensing technique that yields data similar to surface plasmon 
resonance. Here, we successfully tethered whole Sf6 virions, 
determined the binding constant of Sf6 to OmpA to be 36 nM. 
Additionally, we showed that Sf6 bound to five variant OmpAs and 
the resulting kinetic parameters varied only slightly. Based on these 
data, we propose a model in which Sf6: Omp receptor recognition is 
not solely based on kinetics, but likely also on the ability of an Omp to 
induce a conformational change that results in productive infection.
All rights reserved. No reuse allowed without permission.

A more complex text classification task is annotating paragraphs, 

such as categorizing the research aspect for each fragment in the paper abstract.

Retrieved from https://arxiv.org/abs/2005.02367

Model Data

https://arxiv.org/abs/2005.02367
https://arxiv.org/abs/2005.02367
https://arxiv.org/abs/2005.02367
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Deploying models in the wild can enable further quantitative or 

qualitative research with insights, such as the push notification study in Smell Pittsburgh.

Deploy Models

Bad Smell

Notified

Observation 1

Bad Smell

Unnotified

Observation 2

Y: number of pageviews 

treatment ~ confounders

Y 
~

 c
on

fo
un

de
rs

Hsu, Y. C., et al. (2020). Smell Pittsburgh: Engaging Community Citizen Science for Air Quality. ACM TiiS.
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Another example is to study the behaviors of deployed systems to 

understand its social impact. For example, face recognition systems for recognizing 

gender did worst on darker-skin female images.

Deploy Models

Retrieved from the Gender Shades project on 2018 -- http://gendershades.org

http://gendershades.org/
http://gendershades.org/


• The data science pipeline is not always linear. Be flexible and open-minded!

• Be aware of the step of framing problems. This course assumes that the problems are defined.

• Collecting data requires well-designed software/hardware infrastructure.

• Being familiar with pandas can speed up the data preprocessing step.

• Different types of missing data require different treatments.

• Besides using descriptive statistics, it is also a good idea to visualize and explore data.

• Different types of data need different modeling techniques. There is no “one solution for all”.

• It is important to study user behaviors and investigate the social impact of deployed models.
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Take-Away Messages
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Questions?


