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This lecture introduces classification and

regression techniques for modeling data.



For this lecture, let us now use the following text classification task as

an example: identitying whether a text message is spam or ham (non-spam).

444444444444 PRIVATE!

-
Your 2020 Account won $1,000,000 —) m]

444444444 i
lottery! ¢4+ 4444444 To claim Spam
call 08719180248 &<

Mail

Hi Yen-Chia, may we have our @
meeting on 5/15 by just email >
update to buy some time? if not, Ham
zero worries if you need to talk. (Non—spam)




To classify spam messages, we need examples: a dataset with

observations (messages) and labels (spam or non-spam).

=
444444444444 PRIVATE! Your 2020 Account won $1,000,000 I]II
lottery! 4+ 44444444 To claim call 08719180248 <<><>-<>-<<-<<>
Spam
Hi Yen-Chia, may we have our meeting on 5/15 by just email update to @
buy some time? if not, zero worries if you need to talk.
Ham
Would you be willing to meet with me on 3/26 Thursday when | was in @
TU Delft after (or before) giving the guest lecture (10:35am-11:50am)? Ham
| |
| |
] ]

Observations Labels



We can extract features (information) using human knowledge, which

can help distinguish spam and ham messages.

-
$+ 44444+ 444+ PRIVATE Your 2020 Account won $1,000§000 III]
lotteryl ¥+ #+ 4+ 444 To claim call 08719180248 $¥ e+ v+
Spam
Number of digits = 22
Hi Yen—ChiaI may we have our meeting on 5|1 5 by just email update to @
buy some time® if not} zero worries if you need to talkk Ham

Number of digits = 3



Using features x (which contains x; and x;), we can represent each

message as one data point on an p-dimensional space (p = 2 in this case).

50 , Spam
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40 2020 Account won $1,000,000
lottery! ¢ 44444444 To claim call
30 Ham 08719180248 $44444464

Hi Yen-Chia, may we have our

X, number
2 meeting on 5/15 by just email -

of dlglts update to buy some time? if not,
zero worries if you need to talk.
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We can think of the model as a function f that can separate the

observations into groups (i.e., class labels y) according to their features x = {x, x,}.
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Exercise 2.1: Given a classifier f(x) = =50 + x; + x, and two messages M) and M%),
explain how the model classifies the message as spam or ham mathematically. M) has

34 special characters and 22 digits. M(®) has 21 special characters and 11 digits.

f(x)==50+x; +x, =0

50 A
40
30 o
MW = (34,22
X,: number + (34,22)
of digits 20
M® = (21,11)
10 Spam
Hint: calculate and think 0 Ham >
about the difference between 0 10 20 30 40 50
f(34,22) and f(21,11) X1: number of special characters

gl



We can plug the features x = {x;, x,} into the classifier equation f(x)

to determine if it is spam or ham by checking if f(x) is larger or smaller than zero. The

intuition is to shift the linear classifier to the position that matches the features.

f(x)==50+x; +x, =0

A
Spam
f(x)>0
(1) —
X,: number 1\:['_ (34, 22)
of digits
M® = (21,11)
Ham h
f(x) <0 Jo=¢

f(x) =-18

X1: number of special characters



To find a good function f, we start from some f and train it until

satisfied. We need something to tell us which direction and magnitude to update.
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First, we need an error metric (i.e., cost or objective function). For

example, we can use the sum of distances between the misclassified points and line f.

error = 2 —y - f(x) for each misclassified point x = {xq, x,}

t 1 Spam
y == S
(; o FG) >0
distance 71 misclassitie B +
? - = +1
Why: o —y - f(x) I + i n
/ X! number -----~-~~~~ +
of digits --"~~-~--_f(x) =
Ham
flx) <0
>

X1: number of special characters

Distance from point to plane: https://mathinsight.org/distance point plane


https://mathinsight.org/distance_point_plane

We can use gradient descent (an optimization algorithm) to minimize

the error to train the model f iteratively. This example is the Perceptron algorithm.

minimize error = 2 —y - f(x) for each misclassified point x = {xq, x,}

error = OA
error =1
~‘~~ + +
S i~
error =9 & NS~ + +
~~--- NN
ke T ~ +
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co. L J
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>

X1: number of special characters

Rosenblatt’s Perceptron Learning Algorithm: section 4.5.1 in book https://hastie.su.domains/ElemStatLearn/
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Depending on the needs, we can train different models (using

different loss functions) with various shapes of decision boundaries.
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Depending on the needs, we can train different models (using

different loss functions) with various shapes of decision boundaries.

Input data Nearest Neighbors Linear SVM RBF SVM Decision Tree Random Forest Neural Net

Retrieved from https://scikit-learn.org/stable/auto examples/#classification
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To evaluate our classification model, we need to compute evaluation

metrics to measure and quantify model performance, such as the accuracy of all data.

f + Spam
+
+ N Accuracy for all data
+ W + _ # of correctly classified points
+ + - # of all points
+ 19
= —=10.86
22
Ham

15



But what if the dataset is imbalanced (i.e., some classes have far less

data)? In this case, the accuracy of all data is a bad evaluation metric.

¢ Spam
Accuracy for all data
i _ # of correctly classified points
B # of all points
+
20
Ham
P

Classify all data as non-spam

16



Instead of computing the accuracy for all the data, we can compute

accuracy for each class, which allows us to see the performance of different labels.
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Classify all data as non-spam

Accuracy for spam = 5= 0

(true positive rate, recall, sensitivity)

18
Accuracy for ham = 18- 1

(true negative rate, specificity)
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If we care more about the positive class (e.g., spam), we can use

precision and recall, with its best value at 1 and the worst value at O.

? ep Spam TP =1 (True Positive)
FP = 2 (False Positive)
Ep FN = 1 (False Negative)
+ TP
TN Precisi TP 0.33
r n=————=0~0.
eCl1S10 TP + FP
Recall = F = 0.5
REWD T TP RN T

He and Garcia. 2009. Learning from imbalanced data. IEEE TKDE.

18



Precision and recall can be aggregated into F-score as a general

model performance, with its best value at 1 and worst value at O.

relevant elements
| |

false negatives true negatives How many selected How many relevant
items are relevant? items are selected?
® o o O o
Precision = ——— Recall = ———
false '
positives positives

Precision - Recall

F- = 2.
SEOTE Precision + Recall

selected elements

Retrieved from https://en.wikipedia.org/wiki/Precision and recall
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Exercise 2.2: Suppose that we fit a binary classification model in identitying spam and

ham (i.e., non-spam). Spam is the positive label, and ham is the negative label.

* 40 samples are predicted as spam, and they are indeed spam in reality
« 20 samples are predicted as spam, but it turns out that they are not spam in reality
« 60 samples are predicted as ham, but it turns out that they are spam in reality

« 80 samples are predicted as ham, and they are indeed ham in reality

What are the precision, recall, and f-score (F) of the model?

Precisi TP Recall TP oo Precision - Recall
r n=—— = — .
CCISION = &5 TP A = TP+ FN Precisio + Recall

2081



We can train different types of models. But how do we know which

one is better? Can we just pick an evaluation metric to determine which model is good?
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To choose models, we need a test set, which contains data that the

models have not yet seen before during the training phase.

Dataset

Training Set Test Set

Homework Exam




Model A
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Testing Accuracy = 0.5

Training Accuracy = 0.86

—

—

—

Testing Accuracy = 1



VEEERICIWERN  To tune hyper-parameters or select features for a model, we use

cross-validation to divide the dataset into folds and use each fold for validation.

Experiment 1
Experiment 2
Experiment 3
Experiment 4

Experiment 5

Dataset (without the test set)

Test Set

Training
A

Validation
]

\ 1

24



You should not use the test set to tune hyper-parameters or select

features, which will lead to information leakage. The test set is used to do an unbiased

check of generalization performance after all modeling decisions are made.

Experiment 1

Dataset (without the test set)

Test Set

Training Validation
l \ l |
| |
Only for evaluating
model performance
For training models For tuning hyper-parameters

and/or selecting features

25



Model Training One way to select features is to recursively eliminate the less

important ones by using metrics like permutation importance (which means permuting

a feature several times and measuring the decrease in model performance).

X1 E [ 1]
X2 | HIH
I
X3 {1
I
We repeat the permutation (and X4 [E:D.
X Hi—
compute model performance) ° !
X6
for multiple times. Why? %
i
I
Xg FE'[’—i
1
Xg 1 H hhH
0.60 0.I05 0.I10 0.2'15 0.I20 0.|25

Decrease in accuracy score

Figure source -- https://scikit-learn.org/1.5/modules/permutation _importance.html 26
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It two highly correlated features exist, the model can access the

information from the non-permuted feature. Thus, it may appear that both features are

not important (which can be false). A better way is to cluster the correlated features first.

Permutation important on correlated features Permutation important on clustered features
worst texture - —— ——
worst concave points — L I b

worst area -

worst smoothness ’—!:'_(1) mean radius -
mean radius -

worst symmetry

concave points error A

worst compactness -

symmetry error -

fractal dimension error

concavity error A

perimeter error -

compactness error -

worst fractal dimension -

mean area -

mean compactness -

mean smoothness

smoothness error -

mean symmetry -

mean fractal dimension -

texture error |

radius error

mean concavity -

mean texture

worst concavity

mean perimeter -

area error -

worst radius A

worst perimeter

— T

mean texture -

LA
alln
(H

mean compactness -

mean smoothness -

texture error - }-ﬂ-{

(0]

"

mean concave points { +—— T ] 1 1
-0.02 -0.01 0.00 0.01 0.02 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Decrease in accuracy score Decrease in accuracy score

Figure source -- https://scikit-learn.org/1.5/modules/permutation _importance.html
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For time-series data, it is better to do the split for cross-validation
based on the order of time intervals, which means we only use data in the past to

predict the future, but not the other way around.

Past data Future data

u ig

X Parkway East ACHD (11067).NO2_PPB

X Parkway East ACHD (11067).NOX_PPBI

Training Validation

a
a
o ]
....
",
Ty
Ta,

Splits

...
...
..A




Unlike classification (which separates data into categories), regression

fits a function that maps features x to a continuous variable y (i.e., the response).

120

Y =-1.02X + 123.07

110

100

Y
1.6 30 P 50 &0 70
X
e [Classification] How can we fit a function that * [Regression] How can we fit a function that maps
separates data points into different groups? features (input) to a continuous variable (output)?

Figure source -- https://saichandra1199.medium.com/classification-vs-regression-6220b83ff8e%0
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Linear regression fits a linear function f that maps x; (e.g., the first

feature vector of something) to y, which can best describe their linear relationship.

9 = F(x)) = Bol + By y: true response
y: estimated response

>

x,: predictor/feature

fo and B;: intercept and slope

- -
)’(1)=f(x£1))=.30'1+,31'x£)

g =f (Xin)) =Po-1+p1 'xfi)_

1 1
x£ ) 1 xi )
| > X1 = : =Byl |+B
. . . 1 L]
/ 9®: estimated response of the i*" data point / (n) 0 1 (n)
. X X
y®: true response of the i*" data point ! !
xf): the first feature of the i*" data point 1 X1

30



We can now create a feature matrix X that includes the intercept term

Bo. which gives us a compact form of equation.

9= F(X) = XB y: true response (vector)

y: estimated response (vector)

>

X: predictor/feature (matrix)

B coefficients (vector)

e 1 x
P =Bol|i|+ B
y@ ol [x
(1)
1 x 8,
> X V=Ll + Brx; = FoX ]
| / 9®: estimated response of the i*" data point 1 x(n) A

1

y®: true response of the i*" data point

xf): the first feature of the it"* data point X :B

31



We can now generalize linear regression to have multiple predictors

(i.e., multiple linear regression) and keep the compact mathematical representation.

9= F(X) = XB y: true response (vector)
}: y: estimated response (vector)
X: predictor/feature (matrix)
B coefficients (vector)
ASY 1 xl(l) _ngl)_
. okl M R IS Rl S
S(n n n
y 1 Xy Xp
1 xfl) ngl)- o]
L B

/(') J o thd’X y=f)=|: I () .
y'¥: estimated response of the i ata point n n :
1 x v Xp | By.

y®: true response of the i*" data point

xj(i): the j'" feature of the i*" data point X B

More about multiple linear regression -- https://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/14/lecture-14.pdf

32
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We use the vector and matrix forms to simplify equations.

Vector

= fo + frxg + -

Vector

33



We can map vector and matrix forms to data directly.

Sum of smell ratings H2S in PPM SO2 in PPM Wind direction in DEG Wind speed in MPH

Vector y(1) Vector x4
y® Matrix [..(1) (D]
X1 Xy
ORENG
X1 " Xp

34



We can look at the feature matrix X from two different directions: one

represents features, and the other one represents data points.

Data Point
x@

35



Finally, we need an error metric between the estimated response y

and the true response y to know if the model fits the data well.

>
=
[l
>
_|_
m

> X
| / 9®: estimated response of the i*" data point
y®: true response of the i*" data point

xj(i): the j'" feature of the i*" data point

y: true response (vector)

y: estimated response (vector)
X: predictor/feature (matrix)
B coefficients (vector)

e: error/noise/residual (vector)

_1 xil) ngl)-
y=f(X)=|: : :
1 xin) ngn)
X

36



Usually, we assume that the error € is |ID (independent and identically

distributed) and follows a normal distribution with zero mean and some variance o?.

y 3:=y+6 ENiidN(O,O.Z)
" y=XB

n n

. Nz 2
total errors = z € = z(y(l) — y(l))
=1 i=1
e® = (y® — y(i))z
Small 6° Large G° .
4]
o
o

37



To find the optimal coefficient B, we need to minimize the error (the

sum of squared errors) using gradient descent or taking the derivative of its matrix form.

>

=
[l
>
_|_
m

n n

mﬂlnz E(i) — m'B}nZ(y(l) — x(l)ﬁ)z
1 1

=1 =

= mﬁin(y - X'y — Xp)

Y =-1.02X + 123.07

More about linear regression -- https://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/13/lecture-13.pdf 38
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We can model a non-linear relationship using polynomial functions

with degree k. The example below uses one predictor x;.

9 +e y: true response (vector)

<
= <L
[l

Xp y: estimated response (vector)
X: predictor/feature (matrix)

B coefficients (vector)

X=[1 x ()2 = G
"

p=|"
5

Y =XB =B+ Prxs+ B x) + 4 B ()"

More about polynomial regression -- https://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/lecture-16.pdf
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Here is an example of applying linear and polynomial regression to

the data that is created using a sine function with some random noise.

Noisy sine function and polynomial predictions

=== Fit deg: 1
0o o © )
- == Fitdeg: 2
L AahalN - == Fitdeg: 3
05 -~ lo) Ut ", > i deg
“ee, ©O ,/’O . . \\ o) & - == Fitdeg: 10
Bt TP S " O f(x) + noise
O~V o L ~a Sy
v o s ;ﬁ.:.—\’: o 20,
00 I/ ¢’/ \\\\ 0 O\\\\\\
. //’/ o (o) h s \\\\\\
. o See " O
L’ \\§ o T Y
Q ’'o ~~. 9 \\\\\ by
‘\ /,l’ e N N
05 L A oo\ .
\(I 6 \‘\ \\
/ \\\\ \
/ 8’ a, \\\ Q“\
¢ Q b AN \‘\\
_10 \ \\ \\ O \\\
Q ~ - o \\\
» o\&‘\ \\ b
o~o..-’ NN \ ®
- \O
ot\\4\~ /
-1.5 \\\\ ~'J_
\\ \l’
\
\
\
o
-20 \
00 02 04 06 08 1.0

Source -- https://stats.stackexchange.com/questions/350130/why-is-gradient-descent-so-bad-at-optimizing-polynomial-regression 40
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Using too complex/simple models can lead to overfitting/underfitting,

which means the model fits the training set well but generalizes poorly on the test set.

10 1 : ] l | |
— 300 ,
I.,;': ] 8
/ Underfitting
LT
Desired
3 Overfitting

Source -- https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/ch04 .html 41



https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/ch04.html
https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/ch04.html
https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/ch04.html
https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/ch04.html
https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/ch04.html
https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/ch04.html
https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/ch04.html

To evaluate regression models, one common metric is the coefficient
of determination (R-squared, R?). There exist other metrics such as AIC (Akaike's

Information Criterion) that is based on likelihood, which is not covered in this lecture.

Ay Ay Unexplained
. . . Variation
y(l) 37(1) — f(x(l))
o
R2 =1~ SSres
J_] SStOt
o f
| SSyes = Z(ya) — 9®)?
i
X X _ .
) o8 > SStot = Z(y(l) - 3_’)
Total sum of squares (5S;,¢) Residual sum of squares (SSy¢s) i

Figure source -- https://en.wikipedia.org/wiki/Coefficient_of_determination

42


https://en.wikipedia.org/wiki/Coefficient_of_determination

For simple/multiple linear regression, R* equals the square of

Pearson correlation coefficient r between the true y and the estimated y = f(X).

Regression Plot Regression Plot
=54.4758 - 0.764016 = 75.5458 - 576402 x
5=78137 | R-5g=65%) R-Sg(ad)=32% 5=7.81137 | R-5g=799% R-Sg@d)=79.2%

N

Iy -

20 —

20 -
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o , 2 2 < 3 [ r a 2 o

X
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More about the Coefficient of Determination -- https://online.stat.psu.edu/stat501/lesson/1/1.5 43
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R increases as we add more predictors (since the optimization wants
to decrease the residual sum of squares) and thus is not a good metric for model

selection. The adjusted R?* considers the number of samples (n) and predictors (p).

_ SSres/dfres p: number of features/predictors _Regressmn Plot
— y = 755458 - 576402 x
SStot/dftot 5=7.81137 R-Sg=79.9 %
Rz .: adjusted value of R? .
Afres=n—p—1 adj J .
dfppr =1 — 1 df,.s: residual degree of freedom w—{ . -
N N2 df;o:: total degree of freedom T e )
S8, g = Z(y(z) — ) 0 .
l SSres: residual sum of squares 0 —
1 —) 2 T T T T T T T T T T T
5Stot = Z(y(l) -7) 5S¢0t total sum of squares Totorr s e
i

More about the adjusted Coefficient of Determination -- https://online.stat.psu.edu/stat501/lesson/10/10.3 44
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In the example below, R* is larger for the model with more predictors

(i.e., the cubic model that has three predictors). The adjusted R?, which considers the

number of predictors (model complexity), favors the the square-root model.

Recovery Time
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20 30 40 50 60 70
Exercise Time

Recovery Time
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R* R
Linear 0.6584 0.6243
Quadratic 0.6787 0.6074
Cubic 0.6083
Square root 0.6694

—— binary X
- = square root of X
°
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Exercise Time

This example is from section 11.8 Comparing Different Models in book: Introduction to Statistics and Data Analysis
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Be careful when using and explaining R* in your findings. A bad

R? does not always mean no pattern in the data. A good R* does not always mean that

the function fits the data well. And R? can be greatly affected by outliers.

Regression Plot
y =14-0.0000000 x

5=13.4907 |R-Sq=00%| R-Sglad)=0.0%

a0 —
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Regression Plot
USPopn = -2217 .46 + 1.21862 Year
§ = 22,8340

[R-59=92.0 % | R-Sqadi)=916 %

Deaths

5=140.359

<m

Regression Plot
Deaths=-1121.94 + 179.468 Magnitude
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Cautions of using Coefficient of Determination -- https://online.stat.psu.edu/stat501/lesson/1/1.8



https://online.stat.psu.edu/stat501/lesson/1/1.8
https://online.stat.psu.edu/stat501/lesson/1/1.8
https://online.stat.psu.edu/stat501/lesson/1/1.8

Take-Away Messages

Classification outputs discrete labels, while regression outputs continuous values.

Precision, recall, and F-score are common metrics for evaluating classification models.

R-squared is a common evaluation metric for regression models.

Feature engineering is an important step for models that do not use deep learning techniques.

To train and update a model iteratively, you need a loss function to measure errors.

Generally, it is a good practice to divide datasets into different parts for model training and testing.
A model can perform extremely well on the training set but badly on the test set (i.e., overfitting).

Cross-validation is a good technique to prevent overfitting.



Questions?




