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This lecture covers the pipeline of Natural

Language Processing (NLP):

* Text preprocessing

« Bag of words and TF-IDF

« Topic modeling

Word embeddings and Word2Vec

« Sentence/document representations

e« Attention mechanism



People can read text, but computers can only read numbers. So, we need to represent

text as numbers in a way that computers can read, but how?
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https://unsplash.com/photos/YPgTovTiUv4
https://unsplash.com/photos/faixctm2YRQ

Previously, we have learned the spam classification example about how to represent

messages as data points on a 2-dimensional space, using some hand-crafted features.
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Typically, before the deep learning era, we need to preprocess text using tokenization

(i.e., separating words) and normalization (i.e., standardizing the word format).

Google, headquartered in Mountain View (1600 Amphitheatre Pkwy, Mountain View, CA 940430),

unveiled the new Android phone for $799 at the Consumer Electronic Show. Sundar Pichai said in

his keynote that users love their new Android phones.

\

['google’, 'headquarter’, 'mountain’, 'view', ‘amphitheatre’, 'pkwy', 'mountain’, 'view', 'ca’, 'unveil’,
'new’, 'android’, 'phone’, 'consumer’, 'electronic’, 'show', 'sundar’, 'pichai', 'say', 'keynote’, 'user’,

'love', 'new', 'android', 'phone']



The tokenization step separates a sentence into word fragments (i.e., an array of words).

We can lower the cases first before tokenization.

Google, headquartered in Mountain View (1600 Amphitheatre Pkwy, Mountain View, CA 940430),
unveiled the new Android phone for $799 at the Consumer Electronic Show. Sundar Pichai said in

his keynote that users love their new Android phones.

>>> import nltk

>>> tokens = nltk.tokenize.word tokenize(s.lower())

['google’, ',', 'headquartered’, 'in', 'mountain’, 'view', '(', "1600', 'amphitheatre’, '‘pkwy’, *,', 'mountain’,
'view', ',', 'ca’, '940430', )", ',', 'unveiled’, 'the', 'new’, 'android’, 'phone’, 'for', '$', '799', 'at’, 'the’,

'‘consumer’, 'electronic’, 'show', ", 'sundar’, 'pichai’, 'said', 'in', 'his', 'keynote’, 'that', 'users', 'love’,

'their’, 'new’, 'android’, 'phones’, '.']



During tokenization, we can also remove unwanted tokens, such as punctuations, digits,

symbols, emojis, stop words (i.e., high frequency words, like “the"), etc.

['google’, '}, 'headquartered’, 'In', 'mountain’, 'view', (', 1600, 'amphitheatre’, 'pkwy’, '}', 'mountain’,
'view', ', 'ca’, '240430', '), '}, 'unveiled’, 'the', 'new’, 'android’, 'phone’, 'for', '$', '799', 'at’, 'the’,

‘consumer’, 'electronic’, 'show’, "I, 'sundar’, 'pichai’, 'said’, 'in’', 'his', 'keynote', 'that', 'users’, 'love’,

'their', 'new’, 'android’, 'phones’, '\']

>>> stws = nltk.corpus.stopwords.words('english')

>>> tokens = [t for t in tokens if t.isalpha() and t not in stws]

['google’, 'headquartered’, 'mountain’, 'view', 'amphitheatre', 'pkwy', 'mountain’, 'view', 'ca’, 'unveiled’,
'new’, 'android’, 'phone’, 'consumer’, 'electronic’, 'show’, 'sundar’, 'pichai’, 'said', 'keynote’, 'users’,

'love', 'new', 'android’, 'phones’]



One way to perform normalization is stemming, which chops or replaces word tails (e.g.,

removing “s"”) with the goal of approximate the word’s original form.

['google’, 'headquartered’, 'mountain’, 'view', ‘amphitheatre’, 'pkwy', 'mountain’, 'view', 'ca’, 'unveiled’,
'new’, 'android’, 'phone’, 'consumer’, ‘electronie’, 'show', 'sundar’, 'pichai’, 'said', 'keynote’, 'users’,

'love', 'new', 'android', 'phones']

>>> stemmer = nltk.stem.porter.PorterStemmer ()

>>> clean_tokens = [stemmer.stem(t) for t in tokens]

['googl’, 'headquart’, 'mountain’, 'view', 'amphitheatr’, 'okwi', 'mountain’, 'view', 'ca’, 'unveil’, 'new’,
1

‘android', 'phone’, 'consum’, 'electron’, 'show’, 'sundar’, 'pichai’, 'said', 'keynot’, 'user', 'love’, 'new’,

‘android', 'phone']



Another way to perform normalization is lemmatization, which uses dictionaries and full

morphological analysis to correctly identity the lemma (i.e., base form) for each word.

['google’, 'headquartered’, 'mountain’, 'view', 'amphitheatre’, 'pkwy', 'mountain’, 'view', 'ca’, 'unveiled’,
'new', 'android’, 'phone’, 'consumer’, ‘electronic’, 'show’, 'sundar’, 'pichai’, 'said’, 'keynote’, 'users’,
'love’, 'new’, 'android’, 'phones']

from nltk.corpus import wordnet
lemmatizer = nltk.stem.WordNetLemmatizer ()

pos = [wordnet pos(p) for p in nltk.pos tag(tokens)]
clean _tokens = [lemmatizer.lemmatize(t,p) for t, p in pos]

['google’, 'headquarter’, 'mountain’, 'view', 'amphitheatre’, 'pkwy', 'mountain’, 'view', 'ca’, ‘'unveil’,
'new’, 'android’, 'phone’, 'consumer’, ‘electronic’, 'show', 'sundar’, 'pichai', 'say’, 'keynote’, 'user’,

'love', 'new’, 'android’, 'phone']



To perform lemmatization appropriately, we need POS (Part Of Speech) tagging, which

means labeling the role of each word in a particular part of speech.

Google , headquartered in Mountain View ( 1600 Amphitheatre Pkwy

NOUN PUNCT VERB ADP NOUN NOUN PUNCT NUM NOUN NOUN PUNCT
Mountain View , CA 940430 ) , unveiled the new Android phone for $799 at the Consumer Electronic Show
NOUN NOUN PUNCT NOUN NUM PUNCT PUNCT VERB DET ADJ NOUN NOUN ADP NUM ADP DET NOUN NOUN NOUN PUNC

Sundar Pichai said in his keynote that users love their new Android phones
NOUN NOUN VERB ADP PRON NOUN ADP NOUN VERB PRON ADJ NOUN NOUN

>>> from nltk.corpus import wordnet
>>> def wordnet pos(nltk pos):

if nltk pos[l].startswith('V’): return (nltk pos[@], wordnet.VERB)

if nltk _pos[l].startswith('J’): return (nltk pos[@], wordnet.ADJ)
if nltk pos[l].startswith('R’): return (nltk pos[@], wordnet.ADV)
else: return (nltk pos[0], wordnet.NOUN)




Now we have the cleaned tokens that represent a sentence. We need to transform

them to data points in some high-dimensional space. One example is Bag of Words.
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These data points are also called vectors, which means arrays of numbers that encode

both the direction and length information.

Ham Spam
Hi Yen-Chia, may we have our + 4444444444+ PRIVATE! Your 2020
get 0 A meeting on 5/15 by just email Email Account won $1,000,000 lottery!
need = 1 update to buy some time? if not, 444444444+ Toclaim call 08719180248
call 0
cdaim 0 zero worries if you need to meet. to get the lottery money 4 <<$<<<4<<
lottery 0
private 0 °
money 0
worry m 1
zero m 1
time m 1
buy = 1 Vector of the spam message
update m 1
account 0 =[101121100000110000]
email = 1
meet mmm )

Vector of the ham message

=[01000001111101200]

More about vectors -- https://www.3blue 1Tbrown.com/lessons/vectors
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https://www.3blue1brown.com/lessons/vectors

The Bag of Words approach can be problematic since it weights all words equally, even

after removing stop words. For example, "play” can appear many times in sports news.

If a word appears in only a few documents (and
frequently in these documents), it contains more

information and should be more important.

If a word appears in almost all documents, it
should be less important, since seeing this word

does not give us much information.

13



So, we can use TF-IDF (term frequency—inverse document frequency) to transform

sentences or documents into vectors. Intuitively, TF-IDF means weighted Bag of Words.

Final TF-IDF score for a term in a document

wy g = ti(t, d) x idf(t, D)

The more frequently a term ...and the fewer times it
appears in a given document... appears in other documents...

The higher its TF-IDF value.

Source -- https://www.nlpdemystified.org/course/tf-idf

14


https://www.nlpdemystified.org/course/tf-idf
https://www.nlpdemystified.org/course/tf-idf
https://www.nlpdemystified.org/course/tf-idf
https://www.nlpdemystified.org/course/tf-idf
https://www.nlpdemystified.org/course/tf-idf
https://www.nlpdemystified.org/course/tf-idf

Term Frequency (TF) measures how frequently a term (word) appears in a document.

There are different implementations, such as using a log function to scale it down.

Term Frequency (TF)

tf(t,d) = fi.4

The term frequency is just how
many times the term occurs in
the document.

Given a word(t) in a document(d)...

Alternative Implementation: tf(t, d) = logo(frq + 1)

Source -- https://www.nlpdemystified.org/course/tf-idf 15
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Inverse Document Frequency (IDF) weights each word by considering how frequently it

shows in different documents. IDF is higher when the term appears in fewer documents.

Inverse Document Frequency (IDF)

N is the number of

N 5 documents.

TVt

n,is the number of

documents t appears in.

Given a term(t) and a corpus(D)...
We take the log here as well.

Source -- https://www.nlpdemystified.org/course/tf-idf
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Exercise 7.1: Given the following term frequency table for four words (“apple”, “bike”,

“spaceship”, "tea”) in four documents (i.e., document set D), which word is the most

representative for the first document (with Document ID doc1) according to TF-IDF?

ID TF for |TF for |TF for TF for
"apple” |"bike" | “spaceship” | “tea”
doc1 |8 0 4 8
doc2 |3 2 3 0
doc3 |2 3 0 1
docd |4 0 0 0

tf (apple,docl) =7
tf (bike,docl) =7?
tf (spaceship,docl) =7

tf(tea,docl) =?

idf (apple,D) =7?
idf (bike,D) =?
idf (spaceship,D) =7

idf (tea,D) =?

tf(t? d) — ft,d

The term frequency is just how
many times the term occurs in
the document.

Given a word(t) in a document(d)...

l(;l is the number of
N“ ocuments.
Uz

n,is the number of

documents t appears in.

Given a term(t) and a corpus(D)...
We take the log here as well.
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We can also use topic modeling to encode a sentence/document into a distribution of
topics. Below is an intuition of how the Latent Dirichlet Allocation method works.

Topic Vectors
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_ Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84.



https://www.cs.columbia.edu/~blei/papers/Blei2012.pdf

Each topic vector is represented by a list of words with different weights.

D2
Topic O Topic 1 Topic 2
5_drive i_drives
1_game_ "_baseball team - encryption _ pain -
19_mhz_deck_speed
® .
0_tea me 25 27_monitdri‘lonitors__v‘ games - phone - disease -
[ ]
. 2 hockey - encrypted - candida .
20_bike_ﬁes_miles 11 _jpeg&-age_ players - security - health .
L] ™ ®

29_Iane_!§ redriving s
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® *
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17_space?hsolar_space Topic 3 Topic 5 Topic 6

15_space_launch_moon
4 car voltage space
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e
2_patients dical_msg oyota sigha moon
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Source -- https://maartengr.github.io/BERTopic/getting_started/visualization/visualization.html| 19
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Each topic vector is represented by a list of words with different weights.
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After transforming text into vectors, we can use these vectors for national language

processing tasks, such as sentence/document classification (or clustering).

44444444444+ PRIVATE! Your 2020 Email Account
won $1,000,000 lottery! 4+ 44444444 To claim call
08719180248 to get the lottery money <><><><><-<-<>

A 4

Vector 1
[101121100000110000]

Hi Yen-Chia, may we have our meeting on 5/15 by just
email update to buy some time? if not, zero worries if you

need to meet.

A 4

Vector 2
[01000001111101200]

Would you be willing to meet with me on 3/26 Thursday
when | was in TU Delft after (or before) giving the guest
lecture (10:35am-11:50am)?

v

Vector 3
[0O00000000000001T111]

Build
Model

Text

Vectors

-

Spam

Predictions
/Clustering

<]

Ham
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We have seen the approach of crafting features manually. But we can use deep learning

to automate feature engineering. What should be the input vectors in this case?
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https://unsplash.com/photos/YPgTovTiUv4

We can use one-hot encoding. But this approach is inefficient (in terms of computation)

because it creates long vectors with many zeros, which uses a lot of computer memory.

One-hot encoding

0&@6\0(\ 66\ ’\\.\QJ All other possible words
wene the => [0[0[0|0[1/0/0/0|0|0|0|0]..|0
Weae cat => |1(0]{0/0{0|0|0|0|0|0(0|0]..|0
wsae sat => [0]0]0(1]0|0|0(0(0[|0|0|0]...|0

Word Embeddings -- https://www.tensorflow.org/text/guide/word_embeddings
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Another problem of one-hot encoding is that it does not encode similarity. For example,

the cosine similarity between two one-hot encoded vectors are always zero.

dot product = w/l;;Wege 0

< Weat * Weqt >

CosineSimilarity(W;q¢, Weqt) = cos(0) = Tl
cat sat

length of w,,;

0
=[1 0 0 0 0]-|0f=0

1

0

- Angle 6 close to © - Angle 6 close to 90 - Angle 6 close to 180
- Cos(B) close to 1 - Cos(8) close to © - Cos(8) close to -1
- Similar vectors - Orthogonal vectors - Opposite vectors

Cosine Similarity -- https://www.learndatasci.com/glossary/cosine-similarity/ 24
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The dot product of two vectors can also be used to measure similarity, which considers

both the angle and the vector lengths. Cosine similarity is a normalized dot product.

Magnitudes of vectors
scaled by angle between them

a = |al[blcos(8 )

Source of the graph and more information about the dot product --
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We can use word embeddings to efficiently represent text as vectors, in which similar

words have a similar encoding in a high-dimensional space.

. . . Word Embeddi
A 4-dimensional embedding o mbEEEnes

® Bus
® Dog ® Train
e Cat

.5 . ) e Catbus * Car
cat => 12 | -01 | 43 | 32 2 ® Pet

=

©
mat => |04 | 25 | -09] 05 E

&’8 v e Coff

— ® Paper e Cottee
on == 21 0.3 0.1 0.4 o Water
® Box

oo ) ) ) )
First dimension

Word Embeddings -- https://www.tensorflow.org/text/guide/word_embeddings 26
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Position (e.g., distance and direction) in the word embedding vector space can encode

semantic relations, such as the relation between a country and its capital.

walked

O swam
walking ®

/O\>

swimming

Verb Tense

Italy
Canada Spain i .
@ ® &
Turk;y ‘ ‘ Rome
Ottawa Madrid Germany
@ . @
Ankara .RuSSla .’
o — meslin
MOSCO"/ Japan
Vietnam ®

@) 7 China
o o
‘ Tokyo O} ’

Hanoi i
Beijing

Country-Capital

Source -- https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space
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Exercise 7.2: Given the following word embeddings, compute the cosine similarity

between “desk” and “table”, as well as between “desk” and “desks”.

Y
CosineSimilarity(py, p2)
37 desk (1,3)

__ < P1 P2 > dotproduct -

“p1”“p2” desks (2,2)

X210 P1= (x1,¥1)

[X1 V1] - ] table (3,1)

— Y21l p, = (x2,52) -
o1 (D2l x
X1Xy T Y1Y2

plate (-3,-1) —17

REEETAN R
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But how can we train the word embeddings (i.e., word vectors)? Intuitively, we can

represent words by their context (i.e., the nearby words within a fixed-size window).

...government debt problems turning into | banking | crises as happened in 2009...
...saying that Europe needs unified | banking '\ requlation to replace the hodgepodge...

...India has just given its | banking ' system a shot in the arm...

These context words will be used to represent the word: “banking”

Source -- https://web.stanford.edu/class/cs224n/
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Word2Vec is a method to train word embeddings by context. The goal is to use the

center word to predict nearby words as accurate as possible, based on probabilities.

We need to maximize these conditional probabilities for all
center words w; in the text corpus (i.e., the skip-gram approach)

problems  turning ' crises  as

Y Y \ . J
outside context words center word outside context words
in window of size 2 at positiont in window of size 2

Source -- https://web.stanford.edu/class/cs224n/ 30
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To prepare the training data, we need to build a set of center-context word pairs from a

large text corpus (for maximizing the conditional probabilities of these pairs).

Window :
Size Text Skip-grams
wide, the
[ The wide road shimmered ] in the hot sun. wide, road
wide, shimmered
shimmered, wide
? shimmered, road

The [ wide road shimmered in the ] hot sun.

shimmered, in
shimmered, the

sun, the

The wide road shimmered in [ the hot sun ]. sun. hot

Source -- https://www.tensorflow.org/text/tutorials/word2vec
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Conditional probability describes the probability of an event occurring given that

another event has already occurred.

P(W,T): joint probability distribution P(W|T): conditional probability distribution

J P y P y
Temperature (T) Weather (W) Probability (P)

hot sunny 0.4 P(W|T = hot)
hot rainy 0.1 Weather (W) Conditional Probability (P)
cold sunny 0.2 cunn
cold rainy 0.3 rain;

To calculate conditional probability: P(W|T = cold)

p(A|B) B p(A’ B) : Weather (W) Conditional Probability (P)

~ P(B)

P(sunny,hot) 0.4

P(sunny|hot) = P(hot) iy

More about conditional probability -- https://www.youtube.com/watch?v=_lgyaD7vOOA 32
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Why do we need to model the conditional probability, such as P(w;,1|w;), rather than

just construct the joint probability table P(w;,4, w;) and then calculate P(wy 1 |w;)?

P(W¢1q, we): joint probability distribution

Wit1 Wy Occurrence ) )
" . Think about the following:
crisis banking 10
house banking 0
sccount banking 21  What is the actual task that we want to do in the
apple banking context of Word2Vec?
information banking
news banking .
* How large can the table be? What impact would
regulations government 15 such a table cause during calculation?
orange government 0
capybara government *  What if we have assumptions about what the
policy government
probability distribution should look like?

33



How is probability related to word vectors? We use the dot product similarity of word

vectors to calculate the conditional probabilities, with the help of the softmax function.

softmax function exp (Wg Wt)

A probabilities j=1

exp(w; wy)

*,, compare similarity

crises as

problems  turning

Y Y \ Y )
outside context words center word outside context words
in window of size 2 at positiont in window of size 2

Source -- https://web.stanford.edu/class/cs224n/ 34
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The softmax function maps any arbitrary values to a probability distribution.

----------
*

l...
...........

softmax function exp (Wg Wt)

» P(w,|w;) =
( Ol t) Z?:l eXp(WJTWt)

L 4
-------
uns?®
ausn®

The entire denominator is just for normalization
(n is the number of words in the entire vocabulary list)

softmax function exp (X i)

> P(xl) — Z?:l eip(x])

--------
an?®

The exponential function makes things positive: exp(x) = e*

Source -- https://web.stanford.edu/class/cs224n/
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Below is an example of how the softmax function maps numbers to probabilities.

/exp(Z) + exp(1) + exp(O.l)\

2 exp(1) 0.66
1 /exp(Z) + exp(1) + exp(O.l)\ 0.24

01— exp(0.1) ___~lo.10.
exp(2) + exp(1) + exp(0.1)

softmax function eXPp (X i)
X; » P(x;) =
A

--------
ann?®

Remember that the denominator is just for normalization

More about the softmax function -- https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax 36
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For each word position t = 1, ..., T with window size m, we can adjust the word vectors

(0) to maximize the likelihood function, based on the conditional probabilities.

Likelihood = L(H)—l_[ 1_[ P(Weyj | we; 0)

0 is all variables ‘ t=1 —msjsm

to be optimized J#0
Wt—2 Wt-1 Wt Wti1 Wiy2
problems  turning into banking crises as

\ oo ;
\ J
Y Y Y

outside context words center word outside context words
in window of size 2 at positiont in window of size 2

Maximum Likelihood Estimation -- https://www.youtube.com/watch?v=XepXtl9YKwc , https://www.youtube.com/watch?v=Dnéb%9fCIlUpM
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Below are high-level steps for training word embeddings using Word2Vec skip-gram:

Build a vocabulary list from a large text corpus

* Initialize each word with a random embedding vector w

* For each word w; in the text corpus, select the context words w,, (i.e., the

words that are nearby w;) with a fixed window size

Wo Wo Wt Wo Wo

problems  turning into banking crises as

 For each pair w; and w,, compute the conditional probability P(w,|w;)

« Use gradient descent to update the word vectors to maximize the

likelihood function (equivalent to minimizing the cross-entropy loss)

Mikolov, T., et al. (2013). Distributed Representations of Words and Phrases and their Compositionality. arXiv preprint arXiv:1310.4546.



https://arxiv.org/pdf/1310.4546

w(t-2)
How to implement the Word2Vec

skip-gram model architecture? w(t-1)

« What is the format of the input? wo - >

* What is the format of the output? w(t+1)

SR

* Where are the embedding vectors?
w(t+2)

Mikolov, T., et al. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
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In practice, computing the conditional probability P(w,|w;) using the softmax function

is expensive (why?). One alternative is to use negative sampling to approximate it.

T
: eXp (WO Wt) The wide road shimmered in the hot sun.
L P(wolwy) = - |

.".,. o 4 ] =1 eXp (W] Wt) (wide, road) (road, shimmered) (hot, sun) (the, hot)

"Sagguunns puu® (2’ 3) (3’ 4) (6, 7) (1’6)
&
Original softmax: “Given a center word wy, (wide, road) (wide,sun) ~ (wide, hot)  (wide, temperature) (wide, code)
(2, 3) 2,7) (2,6) (2, 23) 2, 2196)
1 0 0 0 0

what is the probability distribution over all

build context words and labels for all vocab words

words given the context word?” i
Word Context words Labels
Negative sampling: “Given a center word
2 8 7 6 23 2196 1 0 0 0 0
w¢ and a context word w,, is the pair real x . .
1 0 0 0 0

or fake (randomly sampled)?” 84 784 11 68 41 453

Source -- https://www.tensorflow.org/text/tutorials/word2vec



https://www.tensorflow.org/text/tutorials/word2vec

Besides the skip-gram approach, we can also use the CBOW (Continuous Bag of Words
Model) approach. We will skip the math for CBOW (check the paper below for details).

w(t-2)

w(t-2)
w(t-1) w(t-1)
\SUM /
N w(t) w(t) >
w(t+1) 7’ X w(t+1)
w(t+2) w(t+2)
CBOW Skip-gram

Mikolov, T., et al. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
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Playground for word embeddings -- http://projector.tensorflow.org/

Isolate 101 Clear
points selection
by
Search * word

neighbors @ -@

10C

distance

Nearest points in the original space:

BOOKMARKS (0) @

COSINE EUCLIDEAN
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0.570
0.577
0.588
0.588
0.597
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0.612
0.616
0.618
0.629

A
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Word embeddings represent words in vectors.

But how to represent sentences in vectors?

43



We can stack all the word vectors into a matrix, where each column means a dimension

of the word vector, and the number of rows means sentence length.

First dimension

'‘google’, 'headquarter’,
['go0g au of word vector

'mountain’, 'view',

‘amphitheatre’, 'pkwy’,

1012 —212 122 - - 4 google
‘ I| 0.21 —421 - - : headquarter

'mountain’, 'view', 'ca’, 'unveil’,
'new’, 'android’, 'phone’,
'‘consumer’, 'electronic’, 'show’,

'sundar’, 'pichai’, 'say’,

'keynote’, 'user’, 'love’, 'new’,

‘android’, '‘phone’]

44



For a deep feedforward network (or convolutional neural network), all inputs need to

have the same size. But sentences can have different length. So, what should we do?

Mini-batch of
6 sentences

Numbers that
represent a sentence

45



We can drop the parts that are too long and pad the parts that are too short with zeros.

Modified mini-batch
of 6 sentences

Pad these parts
with zeros

Drop these
numbers J

46



After we make sure that all input data have the same size, we can put them into deep

neural networks for different tasks, such as sentence/document classification.

Mini-batches

.....

a
e,
o

..............
..........
.............

.....

n x k representation of Convolutional layer with Max-over-time Fully connected layer
sentence with static and multiple filter widths and pooling with dropout and
non-static channels feature maps softmax output

Figure 1: Model architecture with two channels for an example sentence.

Kim, Y. (2014). Convolutional neural networks for sentence classification. EMNLP.
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Each mini-batch is stored in a tensor object when doing computation, which is a

multidimensional array (i.e., a generalization of scalar, vector, and matrix).

0.1 Vector
311 212
: : <1
\5..2 5
2 2.74 1 68

Mini-batch Tensor Matrix

48



We can also use the recurrent neural network (RNN) to takes inputs with various lengths.

Recurrent connections are shown in the red cyclic edges (and unfolded into red arrows).

Output Output 1 Output 2 Output ... Output T
] I R
-
/ ~N
[ Hidden Hidden Hidden Hidden
l layers layers 1 layers 2 layers T
\
Input Input 1 Input 2 Input ... Input T

Source -- https://d2l.ai/chapter_recurrent-neural-networks/index.html 49
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Typically, we feed features to the deep neural net, but we feed observations (for each

time step) to the recurrent neural net. Notice that the input X below is transposed.

Output 1 Output 2 Output ... Output T
Hidden Hidden Hidden
—> —> —>
layers 1 layers 2 layers T
4 ‘ ‘ 4
Input 1 Input 2 Input ... Input T

T
-xil) x£2)

Xo X2

OO,

| Xp

['google’, 'headquarter’,

Xp

observation at
time T: x(M

xfT)_

An example for natural language processing:

* Feature: the word embedding dimensions

« Observation: the word at position T in a sentence




We can combine RNNs into a sequence-to-sequence (Seg2Seq) model for sentence

classification or sentiment analysis. In this case, the output sequence has only one label.
positive

Sentence
Representation

We can just use the output from the
final layer to represent the sentence

RNN

enjoyed

Source -- https://web.stanford.edu/class/cs224n/
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Seq2Seq models are flexible in the input and output sizes. The rectangles in the graph

below mean vectors, red rectangles mean inputs, and blue rectangles mean outputs.

one to one one to many many to one many to many many to many

e.g., sentence e.g., machine e.g., image e.g., video frame e.g., image
classification translation classification classification captioning

Source -- http://karpathy.github.io/2015/05/21/rnn-effectiveness/ 52
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We can generalize the Seq2Seq model further to the encoder-decoder structure, where

the encoder produces an encoded representation of the entire input sequence.

Encoder Decoder

. A

lls regardent : <eos>

ot
! ! ! ! *_,QUA 'y FF 1]

They are  watching : <eos>

<bos> lls regardent
v
Encoded Representation

Source -- https://d2l.ai/chapter_recurrent-modern/seg2seq.html
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The problem of using only the final encoder output is that it is hard for the model to

remember previous information. Instead, we can have the model consider all outputs.

positive

Sentence
Representation

We can take the mean/max of the encoder
outputs or even train a one-layer neural net
to weight the encoder outputs.

@000

\ 4

A4
—|/0000

\4

A4

Y

RNN Encoder

:

lot

!T

enjoyed the movie

—(000@

! !

overall

Source -- https://web.stanford.edu/class/cs224n/ 54
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But, using the same weights may be insufficient, as we may want the weights to change

according to different inputs. We can use the attention mechanism to achieve this.

positive

Sentence
Representation

7

Attention Layer

A4

A4

V

A4
—{ 0000

A4

A4

—|/0000

%

lot

:

enjoyed the movie

!

Yang, Z., et al. (2016, June). Hierarchical attention networks for document classification. NAACL conference. 55
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Attention is weighted averaging, which lets you do lookups!

Attention is just a weighted average — this is very powerful if the weights are learned!

In attention, the matches all keys softly,
to a weight between 0 and 1. The keys’ values
are multiplied by the weights and summed.

keys values Weighted

Sum
k1 vl
k2 v2
query output
q k3 V3 ZH
k4 v4
k5 v5

In a lookup table, we have a table of keys
that map to values. The matches
one of the keys, returning its value.

keys values

a vl
b v2
query
d C v3
output
d vdi —> v4
e v5

Source -- https://web.stanford.edu/class/cs224n/ 56
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Step 5: Compute attention-weighted sum of encoder output:

T
t=1

Step 4: Compute the attention distribution using softmax:

[a; a, ... ar] = softmax([e; e, ... er])

Step 3: Compute attention scores (dot product similarity):

e, = score(q, k) = q"k,

W), is trainable

Step 2: Transform encoder outputs (dimension reduction):
k., = tanh(W, h;)

Step 1: Get the encoder output values (from the RNN):
ve = hy = h(x¢)

There are many ways of doing step 2 and 3

||

|

—

(representing
a sentence)

State Prediction
Concatenate query
and state vectors,
.|D and project it to a
probability
distribution over
one-hot vectors

>0

? Key A
(<) ) ) 0] @ | Query q (come
h [5) o) e| |O @ | from the previous

Hel ~le® e °|® @[ decoder output or

@ @ @ @ O aninitial condition)
X; Word

embeddings
il a m’  entarté

Source -- https://web.stanford.edu/class/cs224n/
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Sequence-to-sequence with attention

Attention he

output T :
Concatenate attention output
c e ~ . .
So . y1 <+ with decoder hidden state, then
A .': 5 .”‘ A
e 3 A use to compute ¥, as before
L=
<35
c
O u
s &
S O
= O
= U
<<
| -
CIJ (] ] ] [ o
EE ® ol o .o J| o
o £ o “le[ |e[ @ o
S e e L e o
il a m’  entarté <START>
N J
Y

Source sentence (input)

Source -- https://web.stanford.edu/class/cs224n/

NNY 49p023Q
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Sequence-to-sequence with attention

Attention

Attention

Encoder

distribution

scores

RNN

Attention hit
output

—

.
.,
.
.
.
. N
.,
.
.
.

S D
7 N

() () () (] (@) O
(] () (] 1@ 10O O
() (] Qo 10 10 O
() (] () (] (@) O
il a m’  entarté <START> he
L J

Y

Source sentence (input)

Source -- https://web.stanford.edu/class/cs224n/

NNY 49p023Q
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Sequence-to-sequence with attention

Attention

Attention

Encoder

distribution

scores

RNN

Attention me
output

G

S
N
.
. e

.
o
o
-
o NN
Od . .,
B 5 .
o .
0
0 . o,
K o .
8 : 0
. g o,
o o .
B o
o . .
8 . 0
0 o o,
o ” 0
B o
l'“l" I:.'l

—

)
7 W
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(] () () | @ JO (@) O
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() (] () (] (@) @) O
il a m’  entarté <START> he hit
L J

Y

Source sentence (input)

Source -- https://web.stanford.edu/class/cs224n/

NNY 49p023Q
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Sequence-to-sequence with attention

Attention
distribution

Attention

Encoder

scores

RNN

Attention with
output

N
C
(] (] (] (] @) @) @) O
() (] (] ] @ ] O 0] @) O
(] (] (] 10 10 (@) o O
(] (] (] (] @) @) @) O
il a m’  entarté <START> he hit me
N J
Y

Source sentence (input)

Source -- https://web.stanford.edu/class/cs224n/

NNY 49p023Q
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Sequence-to-sequence with attention

Attention

Attention

Encoder

distribution

scores

RNN

Attention a
output T
........... —> )’;5
N
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C
A
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Source sentence (input)

Source -- https://web.stanford.edu/class/cs224n/

NNY 49p023Q
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There is a more complicated attention mechanism, “self-attention”, which is the

building block of the Transformer network architecture. outout
Probabilities

-
Scaled Dot-Product Attention Multi-Head Attention .
1 Forward
s _\
MatMul Mult-Head
1 Concat Feed Attention
SoftMax - Forward JD) Nx
1 —
Mask (opt) Scaled Dot-Product ] N< | ~(AsdaNom) T
/) Attention N Multi-Head Multi-Head
Scale 1 1 Al Attention Attention
f N v f L_} L_}
MatMul Linear u Linear Linear u | J U — )
1 T { f f POSitiO.na| _9 G— Positional
Q K V Encoding Encoding
Input Output
V K Q Embedding Embedding
Inputs Outputs
(shifted right)

Vaswani, A., Shazeer, et al. (2017). Attention is all you need. Advances in neural information processing systems. 63
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We have explained the autoregressive approach that generates words one by one.

There is another diffusion approach that can generate a sequence simultaneously.

Autoregressive Diffusion

[BoS] R M] [M] [M] [M] [M] R
NN t =0 Bnégiarlm Ig?ggr?t'ence 0077707000002 't = 3 I\r/‘llat;i ISzeaqluoenr{ce

1 2 14 24 4 14 1 4
[BoS] Hi [M] [M] a pen [M]
NN t =1 Decoding: 00 /] t = 2 Decoding:

¥ ¥ * Left-to-Right ¥ 2 7 ¥ 4 * Free Order
[BoS] Hi ' * One-token per step This is a pen [M] * Multi-token per step
NN t =2  «#steps = #tokens 7 t =1  essteps 2 #tokens

2 2 2 4 4 2 4 2
[BoS] Hi | [EoS] This is a pen .
NN Y t =3 Bt =0

Yu, R, Li, Q., & Wang, X. (2025). Discrete Diffusion in Large Language and Multimodal Models: A Survey. arXiv:2506.13759.
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Take-Away Messages

*  We need to represent text as numbers for Natural Language Processing tasks.

*  We can train word embeddings (vectors) to map words into data points in a high dimensional space.
« One way to train word embeddings is to use the context (e.g., nearby words) to represent a word.

*  Word embeddings also encode semantics, which means similar words are close to each other.

« Cosine similarity and dot product can be used to measure how vectors are close to each other.

« Softmax is a commonly used function in deep learning to map arbitrary values to probabilities.

* Recurrent Neural Network can take inputs with various lengths (e.g., sentences).

« Attention helps the model learn information from the past and focus on a certain part of the source.



Questions?




