
Lecturer: Yen-Chia Hsu

Date: Sep 2025

Data Science
Lecture 7: Text Data Processing

1

2

This lecture covers the pipeline of Natural

Language Processing (NLP):

• Text preprocessing

• Bag of words and TF-IDF

• Topic modeling

• Word embeddings and Word2Vec

• Sentence/document representations

• Attention mechanism

People can read text, but computers can only read numbers. So, we need to represent

text as numbers in a way that computers can read, but how?

3

Text Numbers

Image Source Image Source

?

https://unsplash.com/photos/YPgTovTiUv4
https://unsplash.com/photos/faixctm2YRQ

Previously, we have learned the spam classification example about how to represent

messages as data points on a 2-dimensional space, using some hand-crafted features.

4

0

10

20

30

40

50

0 10 20 30 40 50

Spam

✦✦✦✦✦✦✦✦✦✦✦✦ PRIVATE! Your 2020

Email Account won $1,000,000 lottery!

✦✦✦✦✦✦✦✦✦ To claim call 08719180248

to get the lottery money ✧✧✧✧✧✧✧✧

𝑥!: number of special characters

𝑥": number
of digits

Ham

Hi Yen-Chia, may we have our

meeting on 5/15 by just email

update to buy some time? if not,

zero worries if you need to meet.

(36,22)

(5,3)

Typically, before the deep learning era, we need to preprocess text using tokenization

(i.e., separating words) and normalization (i.e., standardizing the word format).

5

['google', 'headquarter', 'mountain', 'view', 'amphitheatre', 'pkwy', 'mountain', 'view', 'ca', 'unveil',

'new', 'android', 'phone', 'consumer', 'electronic', 'show', 'sundar', 'pichai', 'say', 'keynote', 'user',

'love', 'new', 'android', 'phone']

Google, headquartered in Mountain View (1600 Amphitheatre Pkwy, Mountain View, CA 940430),

unveiled the new Android phone for $799 at the Consumer Electronic Show. Sundar Pichai said in

his keynote that users love their new Android phones.

The tokenization step separates a sentence into word fragments (i.e., an array of words).

We can lower the cases first before tokenization.

6

Google, headquartered in Mountain View (1600 Amphitheatre Pkwy, Mountain View, CA 940430),

unveiled the new Android phone for $799 at the Consumer Electronic Show. Sundar Pichai said in

his keynote that users love their new Android phones.

['google', ',', 'headquartered', 'in', 'mountain', 'view', '(', '1600', 'amphitheatre', 'pkwy', ',', 'mountain',

'view', ',', 'ca', '940430', ')', ',', 'unveiled', 'the', 'new', 'android', 'phone', 'for', '$', '799', 'at', 'the',

'consumer', 'electronic', 'show', '.', 'sundar', 'pichai', 'said', 'in', 'his', 'keynote', 'that', 'users', 'love',

'their', 'new', 'android', 'phones', '.']

>>> import nltk
>>> tokens = nltk.tokenize.word_tokenize(s.lower())

During tokenization, we can also remove unwanted tokens, such as punctuations, digits,

symbols, emojis, stop words (i.e., high frequency words, like “the”), etc.

7

['google', 'headquartered', 'mountain', 'view', 'amphitheatre', 'pkwy', 'mountain', 'view', 'ca', 'unveiled',

'new', 'android', 'phone', 'consumer', 'electronic', 'show', 'sundar', 'pichai', 'said', 'keynote', 'users',

'love', 'new', 'android', 'phones']

['google', ',', 'headquartered', 'in', 'mountain', 'view', '(', '1600', 'amphitheatre', 'pkwy', ',', 'mountain',

'view', ',', 'ca', '940430', ')', ',', 'unveiled', 'the', 'new', 'android', 'phone', 'for', '$', '799', 'at', 'the',

'consumer', 'electronic', 'show', '.', 'sundar', 'pichai', 'said', 'in', 'his', 'keynote', 'that', 'users', 'love',

'their', 'new', 'android', 'phones', '.']

>>> stws = nltk.corpus.stopwords.words('english')
>>> tokens = [t for t in tokens if t.isalpha() and t not in stws]

One way to perform normalization is stemming, which chops or replaces word tails (e.g.,

removing “s”) with the goal of approximate the word’s original form.

8

['googl', 'headquart', 'mountain', 'view', 'amphitheatr', 'pkwi', 'mountain', 'view', 'ca', 'unveil', 'new',

'android', 'phone', 'consum', 'electron', 'show', 'sundar', 'pichai', 'said', 'keynot', 'user', 'love', 'new',

'android', 'phone']

['google', 'headquartered', 'mountain', 'view', 'amphitheatre', 'pkwy', 'mountain', 'view', 'ca', 'unveiled',

'new', 'android', 'phone', 'consumer', 'electronic', 'show', 'sundar', 'pichai', 'said', 'keynote', 'users',

'love', 'new', 'android', 'phones']

>>> stemmer = nltk.stem.porter.PorterStemmer()
>>> clean_tokens = [stemmer.stem(t) for t in tokens]

Another way to perform normalization is lemmatization, which uses dictionaries and full

morphological analysis to correctly identify the lemma (i.e., base form) for each word.

9

['google', 'headquartered', 'mountain', 'view', 'amphitheatre', 'pkwy', 'mountain', 'view', 'ca', 'unveiled',

'new', 'android', 'phone', 'consumer', 'electronic', 'show', 'sundar', 'pichai', 'said', 'keynote', 'users',

'love', 'new', 'android', 'phones']

>>> from nltk.corpus import wordnet
>>> lemmatizer = nltk.stem.WordNetLemmatizer()
>>> pos = [wordnet_pos(p) for p in nltk.pos_tag(tokens)]
>>> clean_tokens = [lemmatizer.lemmatize(t,p) for t, p in pos]

['google', 'headquarter', 'mountain', 'view', 'amphitheatre', 'pkwy', 'mountain', 'view', 'ca', 'unveil',

'new', 'android', 'phone', 'consumer', 'electronic', 'show', 'sundar', 'pichai', 'say', 'keynote', 'user',

'love', 'new', 'android', 'phone']

To perform lemmatization appropriately, we need POS (Part Of Speech) tagging, which

means labeling the role of each word in a particular part of speech.

10

>>> from nltk.corpus import wordnet
>>> def wordnet_pos(nltk_pos):
... if nltk_pos[1].startswith('V’): return (nltk_pos[0], wordnet.VERB)
... if nltk_pos[1].startswith('J’): return (nltk_pos[0], wordnet.ADJ)
... if nltk_pos[1].startswith('R’): return (nltk_pos[0], wordnet.ADV)
... else: return (nltk_pos[0], wordnet.NOUN)

Now we have the cleaned tokens that represent a sentence. We need to transform

them to data points in some high-dimensional space. One example is Bag of Words.

11

0

10

20

30

40

50

0 10 20 30 40 50

Ham

Hi Yen-Chia, may we have our

meeting on 5/15 by just email

update to buy some time? if not,

zero worries if you need to meet.

2
1

0
1
1
1
1
1

0
0
0
0
0
1

0

meet
email

account
update

buy
time
zero

worry
money
private
lottery
claim
call

need
get

0
1
1

0
0
0
0
0
1
1
2

1
1

0
1

meet
email

account
update

buy
time
zero

worry
money
private
lottery
claim
call

need
get

(0,1,0,0,0,0,0,1,1,1,1,1,0,1,2)

(1,0,1,1,2,1,1,0,0,0,0,0,1,1,0)

Spam

✦✦✦✦✦✦✦✦✦✦✦✦ PRIVATE! Your 2020

Email Account won $1,000,000 lottery!

✦✦✦✦✦✦✦✦✦ To claim call 08719180248

to get the lottery money ✧✧✧✧✧✧✧✧

𝑥#: frequency of some specific word 𝑤!

These data points are also called vectors, which means arrays of numbers that encode

both the direction and length information.

12

0

10

20

30

40

50

0 10 20 30 40 50Vector of the ham message

= [0 1 0 0 0 0 0 1 1 1 1 1 0 1 2 0 0]

Vector of the spam message

= [1 0 1 1 2 1 1 0 0 0 0 0 1 1 0 0 0 0]

2
1

0
1
1
1
1
1

0
0
0
0
0
1

0

meet
email

account
update

buy
time
zero

worry
money
private
lottery
claim
call

need
get

0
1
1

0
0
0
0
0
1
1
2

1
1

0
1

meet
email

account
update

buy
time
zero

worry
money
private
lottery
claim
call

need
getHam

Hi Yen-Chia, may we have our

meeting on 5/15 by just email

update to buy some time? if not,

zero worries if you need to meet.

Spam

✦✦✦✦✦✦✦✦✦✦✦✦ PRIVATE! Your 2020

Email Account won $1,000,000 lottery!

✦✦✦✦✦✦✦✦✦ To claim call 08719180248

to get the lottery money ✧✧✧✧✧✧✧✧

More about vectors -- https://www.3blue1brown.com/lessons/vectors

https://www.3blue1brown.com/lessons/vectors

The Bag of Words approach can be problematic since it weights all words equally, even

after removing stop words. For example, ”play” can appear many times in sports news.

13

If a word appears in almost all documents, it

should be less important, since seeing this word

does not give us much information.

If a word appears in only a few documents (and

frequently in these documents), it contains more

information and should be more important.

So, we can use TF-IDF (term frequency-inverse document frequency) to transform

sentences or documents into vectors. Intuitively, TF-IDF means weighted Bag of Words.

14Source -- https://www.nlpdemystified.org/course/tf-idf

https://www.nlpdemystified.org/course/tf-idf
https://www.nlpdemystified.org/course/tf-idf
https://www.nlpdemystified.org/course/tf-idf
https://www.nlpdemystified.org/course/tf-idf
https://www.nlpdemystified.org/course/tf-idf
https://www.nlpdemystified.org/course/tf-idf

Term Frequency (TF) measures how frequently a term (word) appears in a document.

There are different implementations, such as using a log function to scale it down.

15Source -- https://www.nlpdemystified.org/course/tf-idf

Alternative Implementation: tf 𝑡, 𝑑 = log!"(𝑓#,% + 1)

https://www.nlpdemystified.org/course/tf-idf
https://www.nlpdemystified.org/course/tf-idf
https://www.nlpdemystified.org/course/tf-idf
https://www.nlpdemystified.org/course/tf-idf
https://www.nlpdemystified.org/course/tf-idf
https://www.nlpdemystified.org/course/tf-idf

Inverse Document Frequency (IDF) weights each word by considering how frequently it

shows in different documents. IDF is higher when the term appears in fewer documents.

16Source -- https://www.nlpdemystified.org/course/tf-idf

https://www.nlpdemystified.org/course/tf-idf
https://www.nlpdemystified.org/course/tf-idf
https://www.nlpdemystified.org/course/tf-idf
https://www.nlpdemystified.org/course/tf-idf
https://www.nlpdemystified.org/course/tf-idf
https://www.nlpdemystified.org/course/tf-idf

Exercise 7.1: Given the following term frequency table for four words (“apple”, “bike”,

“spaceship”, ”tea”) in four documents (i.e., document set 𝐷), which word is the most

representative for the first document (with Document ID 𝑑𝑜𝑐1) according to TF-IDF?

17

ID TF for
“apple”

TF for
“bike”

TF for
“spaceship”

TF for
“tea”

doc1 8 0 4 8

doc2 3 2 3 0

doc3 2 3 0 1

doc4 4 0 0 0

𝑡𝑓 𝑡𝑒𝑎, 𝑑𝑜𝑐1 =	? 𝑖𝑑𝑓 𝑡𝑒𝑎, 𝐷 =	?

𝑡𝑓 𝑎𝑝𝑝𝑙𝑒, 𝑑𝑜𝑐1 =	? 𝑖𝑑𝑓 𝑎𝑝𝑝𝑙𝑒, 𝐷 =	?

𝑡𝑓 𝑠𝑝𝑎𝑐𝑒𝑠ℎ𝑖𝑝, 𝑑𝑜𝑐1 =	? 𝑖𝑑𝑓 𝑠𝑝𝑎𝑐𝑒𝑠ℎ𝑖𝑝, 𝐷 =	?

𝑡𝑓 𝑏𝑖𝑘𝑒, 𝑑𝑜𝑐1 =	? 𝑖𝑑𝑓 𝑏𝑖𝑘𝑒, 𝐷 =	?

We can also use topic modeling to encode a sentence/document into a distribution of

topics. Below is an intuition of how the Latent Dirichlet Allocation method works.

18Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84.

Topic Vectors
Documents

Topic
Assignment

Topic
Distribution

https://www.cs.columbia.edu/~blei/papers/Blei2012.pdf

Each topic vector is represented by a list of words with different weights.

19Source -- https://maartengr.github.io/BERTopic/getting_started/visualization/visualization.html

https://maartengr.github.io/BERTopic/getting_started/visualization/visualization.html
https://maartengr.github.io/BERTopic/getting_started/visualization/visualization.html
https://maartengr.github.io/BERTopic/getting_started/visualization/visualization.html
https://maartengr.github.io/BERTopic/getting_started/visualization/visualization.html
https://maartengr.github.io/BERTopic/getting_started/visualization/visualization.html
https://maartengr.github.io/BERTopic/getting_started/visualization/visualization.html
https://maartengr.github.io/BERTopic/getting_started/visualization/visualization.html
https://maartengr.github.io/BERTopic/getting_started/visualization/visualization.html

20Source -- https://github.com/ddangelov/Top2Vec

Each topic vector is represented by a list of words with different weights.

https://github.com/ddangelov/Top2Vec
https://github.com/ddangelov/Top2Vec
https://github.com/ddangelov/Top2Vec
https://github.com/ddangelov/Top2Vec
https://github.com/ddangelov/Top2Vec

After transforming text into vectors, we can use these vectors for national language

processing tasks, such as sentence/document classification (or clustering).

21

✦✦✦✦✦✦✦✦✦✦✦✦ PRIVATE! Your 2020 Email Account

won $1,000,000 lottery! ✦✦✦✦✦✦✦✦✦ To claim call

08719180248 to get the lottery money ✧✧✧✧✧✧✧✧

Hi Yen-Chia, may we have our meeting on 5/15 by just

email update to buy some time? if not, zero worries if you

need to meet.

Would you be willing to meet with me on 3/26 Thursday

when I was in TU Delft after (or before) giving the guest

lecture (10:35am-11:50am)?

Text

Vector 1

[1 0 1 1 2 1 1 0 0 0 0 0 1 1 0 0 0 0]

Vector 2

[0 1 0 0 0 0 0 1 1 1 1 1 0 1 2 0 0]

Vector 3

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1]

Vectors

Build
Model

Predictions
/Clustering

Spam

Ham

?

We have seen the approach of crafting features manually. But we can use deep learning

to automate feature engineering. What should be the input vectors in this case?

22

Image Source

https://unsplash.com/photos/YPgTovTiUv4

We can use one-hot encoding. But this approach is inefficient (in terms of computation)

because it creates long vectors with many zeros, which uses a lot of computer memory.

23Word Embeddings -- https://www.tensorflow.org/text/guide/word_embeddings

0 0 0 0 0 0 0 … 0
0 0 0 0 0 0 0 … 0
0 0 0 0 0 0 0 … 0

All other possible words

𝑤/01

𝑤123

𝑤401

https://www.tensorflow.org/text/guide/word_embeddings
https://www.tensorflow.org/text/guide/word_embeddings
https://www.tensorflow.org/text/guide/word_embeddings
https://www.tensorflow.org/text/guide/word_embeddings

Another problem of one-hot encoding is that it does not encode similarity. For example,

the cosine similarity between two one-hot encoded vectors are always zero.

24Cosine Similarity -- https://www.learndatasci.com/glossary/cosine-similarity/

CosineSimilarity 𝑤678 , 𝑤978 = cos(𝜃) =
< 𝑤678 ⋅ 𝑤978 >
𝑤678 𝑤978

= 1 0 0 0 0 ⋅

0
0
0
1
0

= 0

dot product = 𝑤$%&' 𝑤(%&
𝑤$%&'

𝑤(%&

length of 𝑤$%&

https://www.learndatasci.com/glossary/cosine-similarity/
https://www.learndatasci.com/glossary/cosine-similarity/
https://www.learndatasci.com/glossary/cosine-similarity/

The dot product of two vectors can also be used to measure similarity, which considers

both the angle and the vector lengths. Cosine similarity is a normalized dot product.

25Source of the graph and more information about the dot product -- https://www.youtube.com/watch?v=C0sPtQ3wX9o

https://www.youtube.com/watch?v=C0sPtQ3wX9o
https://www.youtube.com/watch?v=C0sPtQ3wX9o
https://www.youtube.com/watch?v=C0sPtQ3wX9o
https://www.youtube.com/watch?v=C0sPtQ3wX9o
https://www.youtube.com/watch?v=C0sPtQ3wX9o

We can use word embeddings to efficiently represent text as vectors, in which similar

words have a similar encoding in a high-dimensional space.

26Word Embeddings -- https://www.tensorflow.org/text/guide/word_embeddings

Cat

Bus

Coffee

Dog

Pet

Train

Car

Water

Tea

Catbus

Box

Paper

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3

Se
co

nd
 d

im
en

si
on

First dimension

Word Embeddings

https://www.tensorflow.org/text/guide/word_embeddings
https://www.tensorflow.org/text/guide/word_embeddings
https://www.tensorflow.org/text/guide/word_embeddings
https://www.tensorflow.org/text/guide/word_embeddings

Position (e.g., distance and direction) in the word embedding vector space can encode

semantic relations, such as the relation between a country and its capital.

27Source -- https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space

https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space
https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space
https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space
https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space
https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space
https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space
https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space
https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space
https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space
https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space
https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space
https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space
https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space
https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space
https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space
https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space
https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space

Exercise 7.2: Given the following word embeddings, compute the cosine similarity

between “desk” and “table”, as well as between “desk” and “desks”.

28

CosineSimilarity 𝑝:, 𝑝;

=
< 𝑝: ⋅ 𝑝; >
𝑝: 𝑝;

=
𝑥: 𝑦: ⋅

𝑥;
𝑦;

𝑝: 𝑝;

=
𝑥:𝑥; + 𝑦:𝑦;

𝑥:; + 𝑦:; ⋅ 𝑥;; + 𝑦;;

dot product

𝑝! = (𝑥!, 𝑦!)

𝑝" = (𝑥", 𝑦")

But how can we train the word embeddings (i.e., word vectors)? Intuitively, we can

represent words by their context (i.e., the nearby words within a fixed-size window).

29

...government debt problems turning into

...saying that Europe needs unified

...India has just given its

banking

banking

banking

crises as happened in 2009...

regulation to replace the hodgepodge...

system a shot in the arm...

These context words will be used to represent the word: “banking”

Source -- https://web.stanford.edu/class/cs224n/

https://web.stanford.edu/class/cs224n/

Word2Vec is a method to train word embeddings by context. The goal is to use the

center word to predict nearby words as accurate as possible, based on probabilities.

30

We need to maximize these conditional probabilities for all
center words 𝑤& in the text corpus (i.e., the skip-gram approach)

Source -- https://web.stanford.edu/class/cs224n/

https://web.stanford.edu/class/cs224n/

To prepare the training data, we need to build a set of center-context word pairs from a

large text corpus (for maximizing the conditional probabilities of these pairs).

31Source -- https://www.tensorflow.org/text/tutorials/word2vec

https://www.tensorflow.org/text/tutorials/word2vec

Conditional probability describes the probability of an event occurring given that

another event has already occurred.

32More about conditional probability -- https://www.youtube.com/watch?v=_IgyaD7vOOA

Weather (W) Conditional Probability (P)

sunny 0.8

rainy 0.2

Weather (W) Conditional Probability (P)

sunny 0.4

rainy 0.6

𝑃(𝑊|𝑇 = ℎ𝑜𝑡)

𝑃(𝑊|𝑇 = 𝑐𝑜𝑙𝑑)

𝑃 𝑊 𝑇 : conditional probability distribution

Temperature (T) Weather (W) Probability (P)

hot sunny 0.4

hot rainy 0.1

cold sunny 0.2

cold rainy 0.3

𝑃(𝑊, 𝑇): joint probability distribution

𝑃 𝑠𝑢𝑛𝑛𝑦|ℎ𝑜𝑡 =
𝑃 𝑠𝑢𝑛𝑛𝑦, ℎ𝑜𝑡

𝑃(ℎ𝑜𝑡) =
0.4
0.5 = 0.8

𝑃 𝐴 𝐵 =
𝑃 𝐴, 𝐵
𝑃(𝐵)

To calculate conditional probability:

https://www.youtube.com/watch?v=_IgyaD7vOOA

Why do we need to model the conditional probability, such as 𝑃(𝑤8<:|𝑤8), rather than

just construct the joint probability table 𝑃(𝑤8<:, 𝑤8) and then calculate 𝑃(𝑤8<:|𝑤8)?

33

𝑤!"# 𝑤! Occurrence

crisis banking 10

house banking 0

account banking 21

apple banking 0

information banking 6

news banking 4

… … …

regulations government 15

orange government 0

capybara government 0

policy government 8

… … …

𝑃(𝑤&)!, 𝑤&): joint probability distribution

Think about the following:

• What is the actual task that we want to do in the

context of Word2Vec?

• How large can the table be? What impact would

such a table cause during calculation?

• What if we have assumptions about what the

probability distribution should look like?

How is probability related to word vectors? We use the dot product similarity of word

vectors to calculate the conditional probabilities, with the help of the softmax function.

34

𝑃 𝑤= 𝑤1 =
exp(𝑤=>𝑤1)

∑?@AB exp(𝑤?>𝑤1)

𝑤1𝑤=𝑤= 𝑤= 𝑤=

𝑤=>𝑤1
softmax function

compare similarity

probabilities

Source -- https://web.stanford.edu/class/cs224n/

https://web.stanford.edu/class/cs224n/

35Source -- https://web.stanford.edu/class/cs224n/

The softmax function maps any arbitrary values to a probability distribution.

𝑃(𝑥C) =
exp(𝑥C)

∑?@AB exp(𝑥?)
𝑥C

softmax function

Larger dot product means larger probability

The entire denominator is just for normalization
(𝑛 is the number of words in the entire vocabulary list)

The exponential function makes things positive: exp 𝑥 = 𝑒*

𝑃 𝑤= 𝑤1 =
exp(𝑤=>𝑤1)

∑?@AB exp(𝑤?>𝑤1)
𝑤=>𝑤1

softmax function

https://web.stanford.edu/class/cs224n/

36More about the softmax function -- https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax

Below is an example of how the softmax function maps numbers to probabilities.

2
1
0.1

0.66
0.24
0.10

exp(2)
exp 2 + exp 1 + exp(0.1)

exp(1)
exp 2 + exp 1 + exp(0.1)

exp(0.1)
exp 2 + exp 1 + exp(0.1)

𝑃(𝑥C) =
exp(𝑥C)

∑?@AB exp(𝑥?)
𝑥C

softmax function

Remember that the denominator is just for normalization

https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax
https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax
https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax
https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax
https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax
https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax
https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax
https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax
https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax
https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax
https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax
https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax
https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax
https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax

For each word position 𝑡 = 1,… , 𝑇 with window size 𝑚, we can adjust the word vectors

(𝜃) to maximize the likelihood function, based on the conditional probabilities.

37Maximum Likelihood Estimation -- https://www.youtube.com/watch?v=XepXtl9YKwc , https://www.youtube.com/watch?v=Dn6b9fCIUpM

𝑤1𝑤1JA𝑤1JK 𝑤1LA 𝑤1LK

https://www.youtube.com/watch?v=XepXtl9YKwc
https://www.youtube.com/watch?v=Dn6b9fCIUpM

Below are high-level steps for training word embeddings using Word2Vec skip-gram:

38Mikolov, T., et al. (2013). Distributed Representations of Words and Phrases and their Compositionality. arXiv preprint arXiv:1310.4546.

• Build a vocabulary list from a large text corpus

• Initialize each word with a random embedding vector 𝑤

• For each word 𝑤8 in the text corpus, select the context words 𝑤= (i.e., the

words that are nearby 𝑤8) with a fixed window size

• For each pair 𝑤8 and 𝑤=, compute the conditional probability 𝑃(𝑤=|𝑤8)

• Use gradient descent to update the word vectors to maximize the

likelihood function (equivalent to minimizing the cross-entropy loss)

𝑤1𝑤=𝑤= 𝑤= 𝑤=

https://arxiv.org/pdf/1310.4546

39

How to implement the Word2Vec

skip-gram model architecture?

• What is the format of the input?

• What is the format of the output?

• Where are the embedding vectors?

Mikolov, T., et al. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.

https://arxiv.org/pdf/1301.3781.pdf

In practice, computing the conditional probability 𝑃(𝑤=|𝑤8) using the softmax function

is expensive (why?). One alternative is to use negative sampling to approximate it.

40

Negative sampling: “Given a center word

𝑤# and a context word 𝑤&, is the pair real

or fake (randomly sampled)?”

Original softmax: “Given a center word 𝑤#,

what is the probability distribution over all

words given the context word?”

Source -- https://www.tensorflow.org/text/tutorials/word2vec

𝑃 𝑤= 𝑤1 =
exp(𝑤=>𝑤1)

∑?@AB exp(𝑤?>𝑤1)

https://www.tensorflow.org/text/tutorials/word2vec

Besides the skip-gram approach, we can also use the CBOW (Continuous Bag of Words

Model) approach. We will skip the math for CBOW (check the paper below for details).

41Mikolov, T., et al. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.

https://arxiv.org/pdf/1301.3781.pdf

42Playground for word embeddings -- http://projector.tensorflow.org/

http://projector.tensorflow.org/

43

Word embeddings represent words in vectors.

But how to represent sentences in vectors?

We can stack all the word vectors into a matrix, where each column means a dimension

of the word vector, and the number of rows means sentence length.

44

['google', 'headquarter',

'mountain', 'view',

'amphitheatre', 'pkwy',

'mountain', 'view', 'ca', 'unveil',

'new', 'android', 'phone',

'consumer', 'electronic', 'show',

'sundar', 'pichai', 'say',

'keynote', 'user', 'love', 'new',

'android', 'phone']

0.12 −2.12 1.22 ⋯ ⋯ 4.21
3.11 0.21 −4.21 ⋯ ⋯ 1.94
⋮ ⋮ ⋮ ⋯ ⋯ ⋮
⋮ ⋮ ⋮ ⋯ ⋯ ⋮
⋮ ⋮ ⋮ ⋯ ⋯ ⋮

−5.22 2.74 1.08 ⋯ ⋯ −2.33

google

headquarter

phone

First dimension
of word vector

For a deep feedforward network (or convolutional neural network), all inputs need to

have the same size. But sentences can have different length. So, what should we do?

45

Mini-batch of
6 sentences

Numbers that
represent a sentence

We can drop the parts that are too long and pad the parts that are too short with zeros.

46

Drop these
numbers

Pad these parts
with zeros

Modified mini-batch
of 6 sentences

After we make sure that all input data have the same size, we can put them into deep

neural networks for different tasks, such as sentence/document classification.

47

Mini-batches

Kim, Y. (2014). Convolutional neural networks for sentence classification. EMNLP.

https://arxiv.org/abs/1408.5882

Each mini-batch is stored in a tensor object when doing computation, which is a

multidimensional array (i.e., a generalization of scalar, vector, and matrix).

48

Mini-batch Tensor Matrix

Vector

We can also use the recurrent neural network (RNN) to takes inputs with various lengths.

Recurrent connections are shown in the red cyclic edges (and unfolded into red arrows).

49Source -- https://d2l.ai/chapter_recurrent-neural-networks/index.html

https://d2l.ai/chapter_recurrent-neural-networks/index.html
https://d2l.ai/chapter_recurrent-neural-networks/index.html
https://d2l.ai/chapter_recurrent-neural-networks/index.html
https://d2l.ai/chapter_recurrent-neural-networks/index.html
https://d2l.ai/chapter_recurrent-neural-networks/index.html
https://d2l.ai/chapter_recurrent-neural-networks/index.html
https://d2l.ai/chapter_recurrent-neural-networks/index.html

Typically, we feed features to the deep neural net, but we feed observations (for each

time step) to the recurrent neural net. Notice that the input 𝑋 below is transposed.

50

𝑋> =

𝑥:
: 𝑥:

; ⋯ ⋯ 𝑥:
>

𝑥;
: 𝑥;

; ⋯ ⋯ 𝑥;
>

⋮ ⋮ ⋯ ⋯ ⋮
⋮ ⋮ ⋯ ⋯ ⋮

𝑥?
: 𝑥?

; ⋯ ⋯ 𝑥?
>

feature: 𝑥"

observation at
time 𝑇: 𝑥($)

An example for natural language processing:

• Feature: the word embedding dimensions

• Observation: the word at position 𝑇 in a sentence

['google', 'headquarter', … 'phones']

We can combine RNNs into a sequence-to-sequence (Seq2Seq) model for sentence

classification or sentiment analysis. In this case, the output sequence has only one label.

51

We can just use the output from the
final layer to represent the sentence

Sentence
Representation

RNN

Source -- https://web.stanford.edu/class/cs224n/

https://web.stanford.edu/class/cs224n/

Seq2Seq models are flexible in the input and output sizes. The rectangles in the graph

below mean vectors, red rectangles mean inputs, and blue rectangles mean outputs.

52Source -- http://karpathy.github.io/2015/05/21/rnn-effectiveness/

e.g., image
classification

e.g., image
captioning

e.g., sentence
classification

e.g., machine
translation

e.g., video frame
classification

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

We can generalize the Seq2Seq model further to the encoder-decoder structure, where

the encoder produces an encoded representation of the entire input sequence.

53Source -- https://d2l.ai/chapter_recurrent-modern/seq2seq.html

Encoder Decoder

Encoded Representation

https://d2l.ai/chapter_recurrent-modern/seq2seq.html
https://d2l.ai/chapter_recurrent-modern/seq2seq.html
https://d2l.ai/chapter_recurrent-modern/seq2seq.html

The problem of using only the final encoder output is that it is hard for the model to

remember previous information. Instead, we can have the model consider all outputs.

54

RNN Encoder

We can take the mean/max of the encoder
outputs or even train a one-layer neural net
to weight the encoder outputs.

Sentence
Representation

Source -- https://web.stanford.edu/class/cs224n/

https://web.stanford.edu/class/cs224n/

But, using the same weights may be insufficient, as we may want the weights to change

according to different inputs. We can use the attention mechanism to achieve this.

55Yang, Z., et al. (2016, June). Hierarchical attention networks for document classification. NAACL conference.

Attention Layer

Sentence
Representation

https://aclanthology.org/N16-1174/

56

Attention is weighted averaging, which lets you do lookups!

11

Attention is just a weighted average – this is very powerful if the weights are learned!

In a lookup table, we have a table of keys
that map to values. The query matches
one of the keys, returning its value.

In attention, the query matches all keys softly,
to a weight between 0 and 1. The keys’ values
are multiplied by the weights and summed.

Source -- https://web.stanford.edu/class/cs224n/

https://web.stanford.edu/class/cs224n/

57

Step 4: Compute the attention distribution using softmax:

[𝑎#	 𝑎$ 	…	𝑎%] = softmax([𝑒#	 𝑒$ 	… 	𝑒%])

Source -- https://web.stanford.edu/class/cs224n/

Query 𝑞 (come
from the previous
decoder output or
an initial condition)

Step 3: Compute attention scores (dot product similarity):

𝑒! = 𝑠𝑐𝑜𝑟𝑒(𝑞, 𝑘!) = 𝑞%𝑘!

State
(representing
a sentence)

Step 5: Compute attention-weighted sum of encoder output:

9
!&#

%
𝑎!𝑣!

Value

Prediction

+

Concatenate query
and state vectors,
and project it to a
probability
distribution over
one-hot vectors

Step 2: Transform encoder outputs (dimension reduction):

𝑘! = tanh 𝑊'ℎ!

Key

There are many ways of doing step 2 and 3

𝑊& is trainable

Step 1: Get the encoder output values (from the RNN):

𝑣! = ℎ! = ℎ(𝑥!)

Word
embeddings

ℎ&

𝑥&

https://web.stanford.edu/class/cs224n/

Sequence-to-sequence with attention

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

Decoder RNN
At

te
nt

io
n

di
st

rib
ut

io
n

At
te

nt
io

n
sc

or
es

Attention
output

Concatenate attention output
with decoder hidden state, then
use to compute !"!	as before

!"!	

he

18

58Source -- https://web.stanford.edu/class/cs224n/

https://web.stanford.edu/class/cs224n/

Sequence-to-sequence with attention

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

Decoder RNN
At

te
nt

io
n

sc
or

es

he

At
te

nt
io

n
di

st
rib

ut
io

n

Attention
output

!"#	

hit

19

Sometimes we take the
attention output from the
previous step, and also
feed it into the decoder
(along with the usual
decoder input). We do
this in Assignment 4.

59Source -- https://web.stanford.edu/class/cs224n/

https://web.stanford.edu/class/cs224n/

Sequence-to-sequence with attention

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

Decoder RNN
At

te
nt

io
n

sc
or

es
At

te
nt

io
n

di
st

rib
ut

io
n

Attention
output

he hit

!"$	

me

20

60Source -- https://web.stanford.edu/class/cs224n/

https://web.stanford.edu/class/cs224n/

Sequence-to-sequence with attention

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

Decoder RNN
At

te
nt

io
n

sc
or

es
At

te
nt

io
n

di
st

rib
ut

io
n

Attention
output

he hit me

!"%	

with

21

61Source -- https://web.stanford.edu/class/cs224n/

https://web.stanford.edu/class/cs224n/

Sequence-to-sequence with attention

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

Decoder RNN
At

te
nt

io
n

sc
or

es
At

te
nt

io
n

di
st

rib
ut

io
n

Attention
output

he hit with

!"&	

a

me

22

62Source -- https://web.stanford.edu/class/cs224n/

https://web.stanford.edu/class/cs224n/

There is a more complicated attention mechanism, “self-attention”, which is the

building block of the Transformer network architecture.

63Vaswani, A., Shazeer, et al. (2017). Attention is all you need. Advances in neural information processing systems.

https://arxiv.org/pdf/1706.03762.pdf

64

We have explained the autoregressive approach that generates words one by one.

There is another diffusion approach that can generate a sequence simultaneously.

Autoregressive Diffusion

Yu, R., Li, Q., & Wang, X. (2025). Discrete Diffusion in Large Language and Multimodal Models: A Survey. arXiv:2506.13759.

https://arxiv.org/abs/2506.13759

This video is created by Yijia Zheng in the MultiX research group at UvA.

• We need to represent text as numbers for Natural Language Processing tasks.

• We can train word embeddings (vectors) to map words into data points in a high dimensional space.

• One way to train word embeddings is to use the context (e.g., nearby words) to represent a word.

• Word embeddings also encode semantics, which means similar words are close to each other.

• Cosine similarity and dot product can be used to measure how vectors are close to each other.

• Softmax is a commonly used function in deep learning to map arbitrary values to probabilities.

• Recurrent Neural Network can take inputs with various lengths (e.g., sentences).

• Attention helps the model learn information from the past and focus on a certain part of the source.

66

Take-Away Messages

67

Questions?

