Data Science

Lecture 11: Multimodal Data Processing

Lecturer: Yen-Chia Hsu

Date: Mar 2024

A modality means how a natural phenomenon is perceived or expressed. Multimodal means having multiple modalities.

Different modalities can have different characteristics.

Different modalities can share information with different levels of connections.

A **teacup** on the **right** of a **laptop** in a **clean room**.

The shared information can be connected in different ways.

Association

e.g., correlation, co-occurrence

A teacup on the right of a laptop in a clean room.

Dependency

e.g., causal, temporal

Multiple modalities can exist in different parts of the machine learning pipeline.

Source: CMU 11-777 MMML Course Lecture 1.1 -- https://cmu-multicomp-lab.github.io/mmml-course/fall2023/schedule/

Image Captioning takes images as input and then outputs sentences that describe the input images (vision-language).

We can also take text as input and then generate images that match the input text (language-vision).

Visual Question Answering takes both images and sentences as input and then outputs a label of text-based multiple-choice answer (vision+language→label).

When the input has multiple modalities, we can fuse the modalities or explicitly learn their connections in the model architecture.

Source: CMU 11-777 MMML Course Lecture 1.1 -- https://cmu-multicomp-lab.github.io/mmml-course/fall2023/schedule/

Nagrani, A., et al. (2021). Attention Bottlenecks for Multimodal Fusion. NeurlPS

Video Classification can use both video and audio signals to predict output categories (vision+audio→labels).

Below are image tokens (i.e., image embedding)

CLS 1 2 ... N_{ν} Below are audio tokens (i.e., audio embedding)

CLS 1 2 ... N_{a}

Transformers use self-attention, which is a way of encoding sequences to tells how much attention each input should pay attention to the other inputs (including itself).

Bidirectional RNN

Convolution

Self-attention

Attention is weighted averaging, which lets you do lookups!

Attention is just a **weighted** average – this is very powerful if the weights are learned!

In **attention**, the **query** matches all **keys** *softly*, to a weight between 0 and 1. The keys' **values** are multiplied by the weights and summed.

In a **lookup table**, we have a table of **keys** that map to **values**. The **query** matches one of the keys, returning its value.

Step 5: Compute attention-weighted sum of encoder output:

• $\sum_{t=1}^{T} a_t h_t$

Step 4: Compute the attention distribution using softmax:

• $[a_1 \ a_2 \ ... \ a_T] = softmax([e_1 \ e_2 \ ... \ e_T])$

Step 3: Compute attention scores (dot product similarity):

• $e_t = q^T u_t$ q is trainable

Step 2: Transform encoder outputs (dimension reduction):

• $u_t = \tanh(Wh_t)$ W is trainable

Step 1: Get the encoder output values (from the RNN):

• h_t

There are many ways of doing step 2 and 3

Convolution layers use fixed weights (kernels) to filter information. Self-attention layers dynamically compute attention filters to show how well a pixel matches its neighbors.

Transformers use multi-head attention to look at different aspects of the inputs.

Transformers are connected by two self-attention blocks (one for encoder, one for decoder) and an encoder-decoder attention block (similar to the original attention).

Transformers can work for multiple vision-language tasks (vision+language→language).

Wang, Z., et al. (2021). SimVLM: Simple Visual Language Model Pretraining with Weak Supervision. ICLR.

Instead of completing the task directly, we can also think about how to learn a good representation (i.e., embedding) so that a linear classifier can separate the data easily.

The CLIP model learns a joint text-image representation using a large number of image and text pairs (vision+language-representation).

We can use the learned CLIP embedding to perform zero-shot prediction by taking the label with the largest similarity score between the label text and the image.

Contrastive Learning brings positive pairs closer and pushes negative pairs far apart.

Paired data:

(e.g., images and text descriptions)

Simple contrastive loss:

Popular contrastive loss: InfoNCE

One active research area is foundation models, which work for both unimodal (e.g., image/text classification) and multimodal tasks (e.g., visual question answering).

Take-Away Messages

- Multimodal means having multiple modalities that represent multiple natural phenomena.
- Multiple modalities can exist in different parts of the machine learning pipeline.
- We can fuse the modalities or explicitly learn their connections in the model architecture.
- Self-attention is a way of encoding sequences to tells how much attention each input should pay attention to the other inputs (including itself).
- We can also think about how to learn a good representation (i.e., embedding) so that a linear classifier can separate the data easily.
- Contrastive Learning brings positive pairs closer and pushes negative pairs far apart.

Questions?