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A modality means how a natural phenomenon is perceived

or expressed. Multimodal means having multiple modalities.
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Element representations:
Discrete, continuous, granularity

Element distributions:
Density, frequency

Structure:
Temporal, spatial, latent, explicit

Information:
Abstraction, entropy

Noise:
Uncertainty, noise, missing data

Relevance:
Task, context dependence

Modality A
(e.g., vision)
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Different modalities can have different characteristics.

Modality B
(e.g., language)

H@) O

©Q O
®—

Examples
(e.g., vision/language)

Sets of images
Sets of characters

Pixel density
Word frequency

Nearby objects
Semantics

Ordering of words
Motion, color

Occlusion
Ambiguity

Object detection
Machine translation

Source: CMU 11-777 MMML Course Lecture 1.1 -- https://cmu-multicomp-lab.github.io/mmml-course/fall2023/schedule/



https://cmu-multicomp-lab.github.io/mmml-course/fall2023/schedule/

Different modalities can share information with different levels of connections.

Connected: Shared information that relates modalities

unique

Modality A A\

Modality B @ unique

strong weak no
connection connection connection

A teacup on the right of a laptop
in a clean room.

Source: CMU 11-777 MMML Course Lecture 1.1 -- https://cmu-multicomp-lab.github.io/mmml-course/fall2023/schedule/



https://cmu-multicomp-lab.github.io/mmml-course/fall2023/schedule/

The shared information can be connected in different ways.

Association

A—O@

e.g., correlation,
CO-occurrence

A teacup on the right of a laptop

in a clean room.

Dependency

A0
e.g., causal,
temporal
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Multiple modalities can exist in different parts of the machine learning pipeline.

The weather tomorrow will be ...

A AAAA QQQQQ EEENEN

Language Vision Audio

[\
Multimodal ML ‘ or @ or A
Prediction .

ModalityC [ [ B B [ . QO Unsupervised, .

D O Self-supervised,
O Supervised, Representation Modality D
0 Reinforcement,

ModaityA A A A A A

Modality B . ‘ ‘ ‘ ‘;

Source: CMU 11-777 MMML Course Lecture 1.1 -- https://cmu-multicomp-lab.github.io/mmml-course/fall2023/schedule/



https://cmu-multicomp-lab.github.io/mmml-course/fall2023/schedule/

A AAAA

> 0000
Modality A

Modality B



From a high-level point of view, we can encode inputs (e.g., a sequence of language
tokens, image with pixels, or patches of images with pixels) into an intermediate state

and then decode the intermediate state into the outputs that are suitable for our task.

State Decoder

Input Output

More about the encoder-decoder architecture -- https://d2l.ai/chapter_recurrent-modern/encoder-decoder.html



https://d2l.ai/chapter_recurrent-modern/encoder-decoder.html

In the single modality setting, we can encode the entire input sequence (e.g., a

sentence) into an intermediate state and then decode the state into another sequence.

| | | | | | l |

la

In put The cat ate the souris

Decoder

Encoder

State lLe chat a mangé la souris . @ Output

Explanation of encoder-decoder architecture in a single modality setting -- https://www.youtube.com/watch?v=zbdong_h-x4



https://www.youtube.com/watch?v=zbdong_h-x4

In the multimodal setting, such as Image Captioning, the model takes images as input

and then outputs sentences that describe the input images (vision—language).

“straw” “hat” END

Encoder START “straw” “hat”

Karpathy, A., & Fei-Fei, L. (2015). Deep Visual-Semantic Alignments for Generating Image Descriptions. CVPR.
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https://arxiv.org/abs/1412.2306

We can also take text as input and then generate images that match the input text

(language—vision).

text image
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Generative model (e.g., GAN, VAE, Diffusion models)

Video source of diffusion models:
https://yang-song.net/blog/2021/score/

Ramesh, A, et al. (2022). Hierarchical Text-Conditional Image Generation with CLIP Latents. arXiv.



https://arxiv.org/abs/2204.06125
https://yang-song.net/blog/2021/score/
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Applying the encoder-decoder concept, one approach is to encode each modality

individually and put all the encoded states into the decoder to produce outputs.

Modality A Encoder A State A

Modality B Encoder B State B Decoder

Output

Modality C State C

More about the encoder-decoder architecture -- https://d2l.ai/chapter_recurrent-modern/encoder-decoder.html



https://d2l.ai/chapter_recurrent-modern/encoder-decoder.html

Visual Question Answering takes both images and sentences as input and then outputs

a label of text-based multiple-choice answer (vision+language—label).

Image Encoder

4096 output units from last hidden layer
(VGGNet, Normalized)

o .-

Convolution Layer Fully-Connected MLP
Convolution Layer Pooling Layer  + Non-Linearity Pooling Layer

+ Non-Lineari

1024

Decoder

1000

Fully-Connected

“o»
2X2X512 LSTM

Fully-Connected

“How many horses are in this image?”

Text
Encoder

Point-wise pjly-Connected Softmax
multiplication

Zhu, Y., et al. (2016). Visual7W: Grounded Question Answering in Images. CVPR. (Figure is from Stanford cs231n course)
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https://arxiv.org/abs/1511.03416
https://web.stanford.edu/class/cs224n/

When the input has multiple modalities, we can fuse the modalities or explicitly learn

their connections in the model architecture.
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Source: CMU 11-777 MMML Course Lecture 1.1 -- https://cmu-multicomp-lab.github.io/mmml-course/fall2023/schedule/

Late Fusion Mid Fusion Bottleneck Fusion Bottleneck Mid Fusion

Nagrani, A., et al. (2021). Attention Bottlenecks for Multimodal Fusion. NeurlPS 15



https://arxiv.org/abs/2107.00135
https://cmu-multicomp-lab.github.io/mmml-course/fall2023/schedule/

Instead of using multiple encoders, we can also encode all modalities into one state

and then put the state into the decoder, such as the Transformer architecture.

Modality A

Modality B

Modality C

State

Decoder

Output

More about the encoder-decoder architecture -- https://d2l.ai/chapter_recurrent-modern/encoder-decoder.html
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https://d2l.ai/chapter_recurrent-modern/encoder-decoder.html

Transformers can use both video and audio signals to predict output categories, which

is the Video Classification task (vision+audio—labels).

avg logits

[ classifier } { classifier ]
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RGB frame patches Audio spectrogram patches

Below are image tokens (i.e., image embedding) Below are audio tokens (i.e., audio embedding)
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Nagrani, A., et al. (2021). Attention Bottlenecks for Multimodal Fusion. NeurlPS
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https://arxiv.org/abs/2107.00135

Transformers also work for multiple vision-language tasks (vision+language—language).

running happily on a dirt road
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Wang, Z., et al. (2021). SimVLM: Simple Visual Language Model Pretraining with Weak Supervision. ICLR.
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https://arxiv.org/abs/2108.10904

Transformers use self-attention, which is a way of encoding sequences to tells how

much attention each input should pay attention to the other inputs (including itself).
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Source: CMU 11-777 MMML Course Lecture 4.2 -- https://cmu-multicomp-lab.github.io/mmml-course/fall2023/schedule/
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https://cmu-multicomp-lab.github.io/mmml-course/fall2023/schedule/

Attention is weighted averaging, which lets you do lookups!

Attention is just a weighted average — this is very powerful if the weights are learned!

In attention, the

matches all keys softly,

to a weight between 0 and 1. The keys’ values
are multiplied by the weights and summed.

keys values Weighted

ki
k2

query
q k3
k4
k5

The figure is from the Stanford CS224N course --

Sum
vl
V2
output
o T
v4
v5

In a lookup table, we have a table of keys
that map to values. The matches
one of the keys, returning its value.

keys values

a vl
b V2
query
d C v3
output
d vdi —> v4
e v5
https://web.stanford.edu/class/cs224n/ 20



https://web.stanford.edu/class/cs224n/

Sentence
Representation

Step 5: Compute attention-weighted sum of encoder output:

T
* Xt=1ache
Prediction _
Step 4: Compute the attention distribution using softmax:

* [aq a, ... ar] = softmax([e; e, ... er])

Step 3: Compute attention scores (dot product similarity):
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Step 2: Transform encoder outputs (dimension reduction):
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Source -- https://web.stanford.edu/class/cs224n/



https://web.stanford.edu/class/cs224n/

Convolution layers use fixed weights (kernels) to filter information. Self-attention layers

dynamically compute attention filters to show how well a pixel matches its neighbors.

T

softrman Attention Filter
we can have
Convolution Kernel inulti e filters
(we can have multiple mupie '
output = —=— i.e., multi-head)
kernels) ’ |
g output

values _D

' matrix multiplication

learned weights S learned transform

Convolution Self-attention

Ramachandran, P, et al. (2019). Stand-Alone Self-Attention in Vision Models. NeurlPS.
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https://arxiv.org/abs/1906.05909

Transformers use multi-head attention to look at different aspects of the inputs.

Attention head 1
attends to entities

g
vV V. V VvV Vv

V V Vv
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went to Stanford CS 224n and learned

Attention head 2 attends to
syntactically relevant words

9
vV V. V VvV Vv

V V Vv
K k k k Kk k Kk Kk

went to Stanford CS 224n and learned

The figure is from the Stanford CS224N course -- https://web.stanford.edu/class/cs224n/
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https://web.stanford.edu/class/cs224n/

Transformers are connected by two self-attention blocks (one for encoder, one for

decoder) and an encoder-decoder attention block (similar to the original attention).
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Source: CMU 11-777 MMML Course Lecture 4.2 -- https://cmu-multicomp-lab.github.io/mmml-course/fall2023/schedule/



https://cmu-multicomp-lab.github.io/mmml-course/fall2023/schedule/

Self-attention is permutation invariant (looks at the input as a set of elements). We use

positional encoding to add the position information to the input embedding vectors.
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Source -- https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorialé/Transformers_and_MHAttention.htm|
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https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial6/Transformers_and_MHAttention.html
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Instead of completing the task directly, we can also think about how to learn a good

representation (i.e., embedding) so that a linear classifier can separate the data easily.

» structure, construction
covering

« commodity, trade good, good

* conveyance, transport

invertebrate

bird

hunting dog
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3
_____________ ENER 311 1 o
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192 192 128 Max | |
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‘ Linear

Classifier

Representation

Donahue, J., et al. (2014).
Decaf: A deep convolutional

activation feature for generic

visual recognition. ICML.

Source: Cornell CS5670 Computer Vision Course -- https://www.cs.cornell.edu/courses/cs5670/2022sp/lectures/lec21_cnns_for_web.pdf
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https://www.cs.cornell.edu/courses/cs5670/2022sp/lectures/lec21_cnns_for_web.pdf
https://proceedings.mlr.press/v32/donahue14.html
https://proceedings.mlr.press/v32/donahue14.html
https://proceedings.mlr.press/v32/donahue14.html

The CLIP model learns a joint text-image representation using a large number of image

and text pairs (vision+language—representation).

(1) Contrastive pre-training
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Radford, A., et al. (2021). Learning Transferable Visual Models From Natural Language Supervision. ICML.



https://arxiv.org/abs/2103.00020

We can use the learned CLIP embedding to perform zero-shot prediction by taking the

label with the largest similarity score between the label text and the image.

(2) Create dataset classifier from label text
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Radford, A., et al. (2021). Learning Transferable Visual Models From Natural Language Supervision. ICML.



https://arxiv.org/abs/2103.00020

Contrastive Learning brings positive pairs closer and pushes negative pairs far apart.

Paireddata: {A,@®}
(e.g., images and text descriptions)
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A O
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«— Negative pairs

Simple contrastive loss:
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Popular contrastive loss: InfoNCE
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Source: CMU 11-777 MMML Course Lecture 3.2 -- https://cmu-multicomp-lab.github.io/mmml-course/fall2023/schedule/
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https://cmu-multicomp-lab.github.io/mmml-course/fall2023/schedule/

One active research area is foundation models, which work for both unimodal (e.g.,

image/text classification) and multimodal tasks (e.g., visual question answering).
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[ input image ] » [CLS_I] S patch P on an ancient grave as to say text »
\ J “I'am the boss here!” \ J

Singh, A., et al. (2022). FLAVA: A Foundational Language And Vision Alignment Model. CVPR. 31



https://arxiv.org/abs/2112.04482

Take-Away Messages

« Multimodal means having multiple modalities that represent multiple natural phenomena.
« Multiple modalities can exist in different parts of the machine learning pipeline.
*  We can fuse the modalities or explicitly learn their connections in the model architecture.

« Self-attention is a way of encoding sequences to tells how much attention each input should pay

attention to the other inputs (including itself).

*  We can also think about how to learn a good representation (i.e., embedding) so that a linear

classifier can separate the data easily.

« Contrastive Learning brings positive pairs closer and pushes negative pairs far apart.



Questions?




