Data Science
 Lecture 2-2: Data Science Fundamentals (Modeling)

通 UNIVERSITY
OF AMSTERDAM
Lecturer: Yen-Chia Hsu
Date: Feb 2024

This lecture recaps classification and regression techniques for modeling data.

For this lecture, let us now use the following text classification task as an example: identifying whether a text message is spam or ham (non-spam).

To classify spam messages, we need examples: a dataset with observations (messages) and labels (spam or non-spam).

Hi Yen-Chia, may we have our meeting on $5 / 15$ by just email update to buy some time? if not, zero worries if you need to talk.

Would you be willing to meet with me on 3/26 Thursday when I was in TU Delft after (or before) giving the guest lecture (10:35am-11:50am)?

Spam

Ham

Ham can help distinguish spam and ham messages.

```
\leftarrowt+t\downarrowt+t\downarrowt\downarrowt\mathrm{ PRIVATE! Your 2020 Account won $1,000,000}
```


Number of special characters $=34$
Number of digits $=22$

$$
\begin{aligned}
& \text { Hi Yen-Chia, may we have our meeting on } 5 / 15 \text { by just email update to } \\
& \text { buy some time? if not, zero worries if you need to talk. }
\end{aligned}
$$

Ham

Number of special characters $=5$
Number of digits $=3$

Using features x (which contains x_{1} and x_{2}), we can represent each message as one data point on an p-dimensional space ($p=2$ in this case).

We can think of the model as a function f that can separate the observations into groups (i.e., class labels y) according to their features $x=\left\{x_{1}, x_{2}\right\}$.

x_{1} : number of special characters

To find a good function f, we start from some f and train it until satisfied. We need something to tell us which direction and magnitude to update.

x_{1} : number of special characters

Classification

First, we need an error metric (i.e., cost or objective function). For example, we can use the sum of distances between the misclassified points and line f.

$$
\text { error }=\sum-y \cdot f(x) \text { for each misclassified point } x=\left\{x_{1}, x_{2}\right\}
$$

x_{1} : number of special characters
Distance from point to plane: https://mathinsight.org/distance point plane

We can use gradient descent (an optimization algorithm) to minimize the error to train the model f iteratively. This example is the Perceptron algorithm.

x_{1} : number of special characters

Depending on the needs, we can train different models (using different loss functions) with various shapes of decision boundaries.

x_{1} : number of special characters

Depending on the needs, we can train different models (using different loss functions) with various shapes of decision boundaries.

To evaluate our classification model, we need to compute evaluation metrics to measure and quantify model performance, such as the accuracy of all data.

Accuracy for all data
$=\frac{\# \text { of correctly classified points }}{\# \text { of all points }}$

$$
=\frac{19}{22}=0.86
$$

But what if the dataset is imbalanced (i.e., some classes have far less data)? In this case, the accuracy of all data is a bad evaluation metric.

Instead of computing the accuracy for all the data, we can compute accuracy for each class, which allows us to see the performance of different labels.

Accuracy for spam $=\frac{0}{2}=0$
(true positive rate, recall, sensitivity)

Accuracy for ham $=\frac{18}{18}=1$
(true negative rate, specificity)
Classify all data as non-spam

If we care more about the positive class (e.g., spam), we can use precision and recall, with its best value at 1 and the worst value at 0 .

$$
\begin{aligned}
& \mathrm{TP}=1 \text { (True Positive) } \\
& \mathrm{FP}=2 \quad \text { (False Positive) } \\
& \mathrm{FN}=1 \quad \text { (False Negative) } \\
& \text { Precision }=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}}=0.33 \\
& \text { Recall }=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}}=0.5
\end{aligned}
$$

Precision and recall can be aggregated into F-score as a general model performance, with its best value at 1 and worst value at 0 .

Exercise 2.1: Suppose that we fit a binary classification model in identifying spam and ham (i.e., non-spam). Spam is the positive label, and ham is the negative label.

- 40 samples are predicted as spam, and they are indeed spam in reality
- 20 samples are predicted as spam, but it turns out that they are not spam in reality
- 60 samples are predicted as ham, but it turns out that they are spam in reality
- 80 samples are predicted as ham, and they are indeed ham in reality

What are the precision, recall, and f-score (F) of the model?

$$
\text { Precision }=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}} \quad \text { Recall }=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}} \quad \mathrm{~F}=2 \cdot \frac{\text { Precision } \cdot \text { Recall }}{\text { Precisio }+ \text { Recall }}
$$

We can train different types of models. But how do we know which one is better? Can we just pick an evaluation metric to determine which model is good?

To choose models, we need a test set, which contains data that the models have not yet seen before during the training phase.

Dataset

© Model A

Testing Accuracy $=0.5$
(3) Model B

To tune hyper-parameters for a model, we use cross-validation to divide the dataset into folds and use each fold for validation.

For time-series data, it is better to do the split for cross-validation based on the order of time intervals, which means we only use data in the past to predict the future, but not the other way around.
 fits a function that maps features x to a continuous variable y (i.e., the response).

- [Classification] How can we fit a function that separates data points into different groups?

- [Regression] How can we fit a function that maps features (input) to a continuous variable (output)?

Linear regression fits a linear function f that maps x to y using some error metric, which can best describe the linear relationship between variables x and y.

y : true response (in vector form)
\hat{y} : estimated response (in vector form)
X : predictors/features (in matrix form)
β : coefficient (in vector form)
ϵ : error/noise/residual (in vector form)
$X=\left[\begin{array}{ll}\mathbf{1} & x_{1}\end{array}\right]=\left[\begin{array}{cc}1 & x_{1}^{(1)} \\ \vdots & \vdots \\ 1 & x_{1}^{(n)}\end{array}\right] \quad \begin{aligned} & \beta_{0}: \text { intercept } \\ & \beta_{1}: \text { slope } \\ & x_{1}: \text { first predictor } \\ & \beta=\left[\begin{array}{l}\beta_{0} \\ \beta_{1}\end{array}\right]\end{aligned}, \$$
$\hat{y}=X \beta=\beta_{0}+\beta_{1} x_{1}=\left[\begin{array}{c}\hat{y}^{(1)} \\ \vdots \\ \hat{y}^{(n)}\end{array}\right]$

We use the vector and matrix forms to simplify equations.

Vector

$$
X=\left[\begin{array}{llll}
\mathbf{1} & x_{1} & \cdots & x_{p}
\end{array}\right]=\left[\begin{array}{cccc}
1 & x_{1}^{(1)} & \cdots & x_{p}^{(1)} \\
\vdots & \vdots & \vdots & \vdots \\
1 & x_{1}^{(n)} & \cdots & x_{p}^{(n)}
\end{array}\right]
$$

$$
\beta=\left[\begin{array}{c}
\text { Scalar } \\
{\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{p}
\end{array}\right]}
\end{array}\right.
$$

$$
\hat{y}=f(x)=X \beta=\left[\begin{array}{llll}
1 & x_{1} & \cdots & x_{p}
\end{array}\right] \cdot\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{p}
\end{array}\right]=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{p} x_{p}=\left[\begin{array}{c}
\hat{y}^{(1)} \\
\vdots \\
\hat{y}^{(n)}
\end{array}\right]
$$

We can map vector and matrix forms to data directly.

Sum of smell ratings

Wind direction in DEG
Wind speed in MPH

Usually, we assume that the error ϵ is IID (independent and identically distributed) and follows a normal distribution with zero mean and some variance σ^{2}.

$$
\begin{aligned}
& \epsilon \sim^{i i d} N\left(0, \sigma^{2}\right) \\
& \text { total errors }=\sum_{i=1}^{n}\left(y^{(i)}-\hat{y}^{(i)}\right)^{2}
\end{aligned}
$$

To find the optimal coefficient β, we need to minimize the error (the sum of squared errors) using gradient descent or taking the derivative of its matrix form.

$$
\begin{aligned}
\min _{\beta} \sum_{i=1}^{n} \epsilon^{(i)} & =\min _{\beta} \sum_{i=1}^{n}\left(y^{(i)}-x^{(i)} \beta\right)^{2} \\
& =\min _{\beta}(y-X \beta)^{T}(y-X \beta)
\end{aligned}
$$

We can generalize linear regression to have multiple predictors (i.e., multiple linear regression) and keep the original mathematical representation.

$$
\begin{aligned}
& x_{j}^{(i)} \text { : the } j^{t h} \text { predictor of the } i^{\text {th }} \text { data point } \\
& y^{(i)} \text { : response of the } i^{\text {th }} \text { data point } \\
& \hat{y}^{(i)} \text { : estimated response of the } i^{\text {th }} \text { data point } \\
& X=\left[\begin{array}{llll}
1 & x_{1} & \cdots & x_{p}
\end{array}\right]=\left[\begin{array}{cccc}
1 & x_{1}^{(1)} & \cdots & x_{p}^{(1)} \\
\vdots & \vdots & \vdots & \vdots \\
1 & x_{1}^{(n)} & \cdots & x_{p}^{(n)}
\end{array}\right] \\
& \beta=\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{p}
\end{array}\right] \\
& \hat{y}=X \beta=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{p} x_{p}=\left[\begin{array}{c}
\hat{y}^{(1)} \\
\vdots \\
\hat{y}^{(n)}
\end{array}\right]
\end{aligned}
$$

We can model a non-linear relationship using polynomial functions with degree k. The example below uses one predictor x_{1}.

$$
\begin{aligned}
& y \text { : true response (in vector form) } \\
& \hat{y} \text { : estimated response (in vector form) } \\
& X: \text { predictors/features (in matrix form) } \\
& \beta \text { : coefficient (in vector form) } \\
& X=\left[\begin{array}{llll}
1 & x_{1} & \left(x_{1}\right)^{2} & \cdots \\
\left(x_{1}\right)^{k}
\end{array}\right] \\
& \beta=\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{k}
\end{array}\right] \\
& \hat{y}=X \beta=\beta_{0}+\beta_{1} x_{1}+\beta_{2}\left(x_{1}\right)^{2}+\cdots+\beta_{k}\left(x_{1}\right)^{k}
\end{aligned}
$$

Here is an example of applying linear and polynomial regression to the data that is created using a sine function with some random noise.

Using too complex/simple models can lead to overfitting/underfitting, which means the model fits the training set well but generalizes poorly on the test set.

Underfitting

Overfitting

To evaluate regression models, one common metric is the coefficient of determination (R-squared, R^{2}). There exist other metrics such as AIC (Akaike's Information Criterion) that is based on likelihood, which is not covered in this lecture.

Total sum of squares $\left(S S_{t o t}\right)$

Unexplained
Variation

$$
R^{2}=1-\frac{S S_{r e s}}{S S_{t o t}}
$$

$$
S S_{r e s}=\sum_{i}\left(y^{(i)}-\hat{y}^{(i)}\right)^{2}
$$

$$
S S_{t o t}=\sum_{i}\left(y^{(i)}-\bar{y}\right)^{2}
$$

For simple/multiple linear regression, R^{2} equals the square of Pearson correlation coefficient r between the true y and the estimated $\hat{y}=f(X)$.

R^{2} increases as we add more predictors (because the optimization always want to decrease the residual sum of squares) and thus is not a good metric for model selection. We need the adjusted R^{2}, which considers the number of predictors.

$$
R_{a d j}^{2}=1-\frac{S S_{r e s} / d f_{r e s}}{S S_{t o t} / d f_{t o t}}
$$

$$
d f_{r e s}=n-p-1
$$

$$
d f_{t o t}=n-1
$$

$S S_{\text {res }}=\sum_{i}\left(y^{(i)}-\hat{y}^{(i)}\right)^{2}$
$S S_{t o t}=\sum_{i}\left(y^{(i)}-\bar{y}\right)^{2}$
p : number of features/predictors
$R_{a d j}^{2}:$ adjusted value of R^{2}
$d f_{\text {res }}$: residual degree of freedom
$d f_{t o t}$: total degree of freedom
$S S_{\text {res }}$: residual sum of squares
$S S_{t o t}$: total sum of squares

In the example below, R^{2} is larger for the model with more predictors (i.e., the cubic model that has three predictors). The adjusted R^{2}, which considers the number of predictors (model complexity), favors the the square-root model.

	R^{2}	$R_{\text {adj }}^{2}$
Linear	0.6584	0.6243
Quadratic	0.6787	0.6074
Cubic	0.7151	0.6083
Square root	0.6694	0.6363

Be careful when using and explaining R^{2} in your findings. A bad R^{2} does not always mean no pattern in the data. A good R^{2} does not always mean that the function fits the data well. And R^{2} can be greatly affected by outliers.

Take-Away Messages

- Classification outputs discrete labels, while regression outputs continuous values.
- Precision, recall, and F-score are common metrics for evaluating classification models.
- R-squared is a common evaluation metric for regression models.
- Feature engineering is an important step for models that do not use deep learning techniques.
- To train and update a model iteratively, you need a loss function to measure errors.
- Generally, it is a good practice to divide datasets into different parts for model training and testing.
- A model can perform extremely well on the training set but badly on the test set (i.e., overfitting).
- Cross-validation is a good technique to prevent overfitting.

Questions?

