Data Science

Lecture 5: Deep Learning Overview

Lecturer: Yen-Chia Hsu

Date: Feb 2025

1

This lecture will give a high-level overview of deep learning and artificial neurons.

Deep learning is the idea of stacking different types of layers (e.g., artificial neurons) to perform very complex tasks. The example below is a deep feedforward neural network.

Image source -- https://atcold.github.io/pytorch-Deep-Learning/en/week02/02-3/

Neurons in the first layer are activated based on the input. Then, neurons are activated layer by layer.

Before the deep learning era, machine learning researchers need to extract features from the data manually. But now, we can delegate feature engineering to the neural net.

Image source -- https://www.cse.psu.edu/~rtc12/CSE486/lecture31_6pp.pdf

Instead of relying on manually crafted features, deep learning models can learn different representations from data automatically (i.e., the so-called deep features).

Deep learning models can extract features automatically and existed long ago but were not widespread due to the high demand for computational resources and power.

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

LeCun, Y., et al. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE.

In 2012, AlexNet showed great improvement in classifying images (ImageNet dataset) using a Convolutional Neural Network on GPUs. Then, the deep learning era started.

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

Krizhevsky, A., et al. (2012). ImageNet classification with deep convolutional neural networks. Proceedings of the NeurIPS conference.

8

Then, deep neural networks went deeper and deeper with different variations.

He, K., et al. (2016). <u>Deep residual learning for image recognition</u>. Proceedings of the CVPR conference.

For sequential data, we can use the **Recurrent Neural Network (RNN)** architecture.

Figure source -- https://en.wikipedia.org/wiki/Recurrent_neural_network

For machine translation, the sequence-to-sequence model (which is an RNN) uses the encoder-decoder architecture. The encoder takes the input in one language, and the decoder outputs the translation to another language.

Source -- https://d2l.ai/chapter_recurrent-modern/seq2seq.html

We can use Autoencoder (based on combining encoder-decoder architecture) to perform image segmentation (using convolutional layers).

Fig. 2. An illustration of the SegNet architecture. There are no fully connected layers and hence it is only convolutional. A decoder upsamples its input using the transferred pool indices from its encoder to produce a sparse feature map(s). It then performs convolution with a trainable filter bank to densify the feature map. The final decoder output feature maps are fed to a soft-max classifier for pixel-wise classification.

12

A recent state-of-the-art is the Transformer architecture (based on encoder-decoder).

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them, add position embeddings, and feed the resulting sequence of vectors to a standard Transformer encoder. In order to perform classification, we use the standard approach of adding an extra learnable "classification token" to the sequence. The illustration of the Transformer encoder was inspired by Vaswani et al. (2017).

Dosovitskiy, A., et al. (2021). An image is worth 16x16 words: Transformers for image recognition at scale. In the ICLR conference.

13

We can also use deep learning to generate data, such as the Generative Adversarial Network structure, which combines a generator (that converts noise to a fake sample) and a discriminator (that tries to identify if a sample is fake or real).

FP5:31 Objects:

elephont: 0.31 elephant: 0.33 elephont: 0.31 elephont: 0.27 elephant: 0.41

YOLO is a deep learning model for object detection.

SegNet is a deep learning model for scene segmentation.

Teachable Machine is a tool that allows people to train a machine for various applications.

This link has a short highlight about how AlphaStar plays StarCraft II.

DALL·E 2 uses deep learning to create realistic images and art from text descriptions.

← → C (25) huggingface.co/spaces/stabilityai/stable-diffusion

Stable Diffusion 2.1 Demo

Stable Diffusion 2.1 is the latest text-to-image model from StabilityAl. Access Stable Diffusion 1 Space here For faster generation and API access you can try <u>DreamStudio Beta</u>.

Stable Diffusion -- https://huggingface.co/spaces/stabilityai/stable-diffusion

		6	Buildir	g Ima	ge Cli	assifi	er wit	th F >	<	+									ì
← -	> C		cha	t.ope	nai.c	:om/	chat,	/0581	f671	1e-e	74a-	43b.		₾	☆	*			
≡				B	uildi	ng Ir	mag	e Cla	assi	ifier	with	ו Py	Forc	:h					4
	Expla	ain th	ne fol	owin	g py	/thor	n co	de:											
	def a ev arr arr if r for	array_ vent = ray = ray.in max_ r i in r a_i1 : diff = if diff	_to_e = [] copy isert(len is range = arra = a_i1 f == 1 ent.a	venti 	(arra pcoj # in Non (arra 1] ray[i] rom id([i,	ay, m py(a isert ie an iy)-1] 0 to ,i])	nax_ rray a ze nd m): 1	len=) ero a hax_l	Noi it th en	ne): ne bi < 1:	egin max	ing ∢_ler	ו = I	Nor	le				
		if r a elif d if a	max_ array liff == a_i1 =	len = [i+1] : 0: # = 1: ;	= 1: = 0 from from	# re m 0 1	star to 0, to 1	t ne> , or f	kt e fron	vent n 1 t	t o 1								
		- II 2	even ⁻ if ma arr	; :[-1][x_ler ay[i+	1] = 1 is r 1] =	i not N 0#	lone rest	e and tart r	l i-e	even t eve	it[-1 ent][0]-	+1 >	•= n	nax_	len:			
	ret	turn e	event																
																		Г <i>И</i> ,	

This Python function, `array_to_event`, takes an input array as its argument, and converts it into a list of events. An "event" here refers to a sequence of consecutive 1's in the input array.

The function first creates an empty list called `event`, which will store the events as they are detected. It then creates a copy of the input array using the `copy.deepcopy()` method, to avoid modifying the original array.

Next, the function inserts a 0 at the beginning of the copied array, to ensure, that the first element in the input array is compared with 0.

<u>ChatGPT Feb 13 Version</u>. Free Research Preview. Our goal is to make AI systems more natural and safe to interact with. Your feedback will help us improve.

•	6	P১	/Torc	h Cl	NN T	raini	ing.		;	<	+	-											~	ļ
C		Â	cha	t.op	oena	ai.co	om/c	:hat/	848	39	201	-84	423	3-4		₾	☆		*				:	
							Рy	Torc	h C	NI	ΝT	rain	inę	g.									+	
Can	you	pr	ovi	de a	an e	xar	nple	e ab	out	ho	ow t	o tr	air	na	CNI	N m	ode	el ir	ı py	torc	ch?	?		
																						_	2	

Sure, here's an example of how to train a simple convolutional neural network (CNN) in PyTorch. In this example, we'll train a CNN to classify images from the CIFAR-10 dataset.

First, let's import the necessary packages:

python	🗂 Copy code
<pre>import torch import torch.nn as nn import torch.optim as optim import torchvision</pre>	
import torchvision.transforms as transforms	

Next, we'll define the hyperparameters for our model:

python	🗂 Copy code
num_epochs = 10 batch_size = 64	
learning_rate = 0.001	
Now, we'll load the CIFAR-10 dataset and apply some dat	ta augmentation:
python	Copy code
transform_train = transforms.Compose([\checkmark

<u>ChatGPT Feb 13 Version</u>. Free Research Preview. Our goal is to make AI systems more natural and safe to interact with. Your feedback will help us improve.

•••	Building Image Classifier with ▷ ×	+		~
$\div \rightarrow c$	■ chat.openai.com/chat/058f6	71e-e74a-43b	₾ ☆ 🏞	
≡	Building Image Clas	sifier with PyTor	ch	+
Can	you explain how gradient descer	it works?		
				Гľ

Sure, I can explain how gradient descent works. Gradient descent is an optimization algorithm that is commonly used to minimize a function's value by iteratively adjusting its parameters.

Here's how it works:

- 1. First, you start with an initial set of parameters for the function you want to optimize.
- Then, you calculate the gradient of the function with respect to each of the parameters. The gradient is a vector that points in the direction of steepest ascent of the function.
- Next, you take a step in the opposite direction of the gradient to descend along the steepest slope of the function. The size of the step is determined by a hyperparameter called the learning rate.
- You repeat this process, updating the parameters based on the negative gradient of the function, until you reach a minimum point or until you reach a stopping criterion.

The goal of gradient descent is to find the set of parameters that minimize the value of the function. By following the negative gradient, we are iteratively moving towards the minimum point of the function.

There are different variations of gradient descent, including batch gradient descent, stochastic gradient descent, and mini-batch gradient descent, which differ in how they update the parameters and how they use the data to calculate the gradients.

1 G

<u>ChatGPT Feb 13 Version</u>. Free Research Preview. Our goal is to make AI systems more natural and safe to interact with. Your feedback will help us improve.

<u>ChatGPT</u> is a large language model developed by OpenAI to have natural conversations with people.

Now let us look at how a deep neural net works, starting from the artificial neuron.

An artificial neuron can convert feature x to prediction \hat{y} by using a weighted sum and an activation function. Then, we need to define a loss function based on the task type.

We need to minimize the error/cost to find the optimal parameter set $\theta = \{w, b\}$. Notice that the prediction \hat{y} is a function of θ , meaning $\hat{y}(\theta) = \hat{y}(w, b) = \sigma(w^T x + b)$.

We have learned how to classify spam and ham using the perceptron algorithm with an error metric. We can also formulate the error in another way.

 x_1 : number of special characters

 $v = -\hat{}$

of digits

f(x) = 0

f(x) < 0

Ham

1.0

0.8

1.2

1.4

1.6

We can represent the perceptron classifier using an artificial neuron. In this case, we use the identify function (as the activation) with the soft perceptron loss.

More information about perceptron in a neural net -- https://engineering.purdue.edu/ChanGroup/ECE595/files/Lecture16_perceptron1.pdf 26

We have also learned linear regression, where we need to find a set of coefficients that can minimize the squared distances between all the predictions and ground truths.

70

60

We can also represent the linear regression model using an artificial neuron. In this case, we use the identity activation function with the squared error loss function.

MSE loss -- https://heartbeat.comet.ml/5-regression-loss-functions-all-machine-learners-should-know-4fb140e9d4b0

We can replace the activation and loss functions with different ones to build another model. The example below uses hinge loss, which becomes Support Vector Machine.

Support Vector Machine (right figure) finds the maximum margin γ separating hyperplane h(x) for classification, while the perceptron classifier finds a separating hyperplane if it exists (e.g., blue or red line on the left figure).

If we replace the activation function to sigmoid and use the logistic loss (i.e., the binary version of cross-entropy loss), the neuron becomes a Logistic Regression model.

Cross-entropy loss -- https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a

31

Logistic Regression model fits a logistic curve to the data to perform classification tasks.

Figure source -- https://www.kdnuggets.com/building-predictive-models-logistic-regression-in-python

Many activation functions exist for various purposes. For example, in classification, ReLU is typical for the middle layers, and sigmoid (or softmax) is for the final layer.

Figure source -- https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning#nn

Also, there are different loss functions for different types of tasks. For example, the least squared error is for regression, and the others below are for classification.

How different is z from y, where y is the ground truth, and z is the prediction.

Figure source -- https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-supervised-learning#notations

The major reason of using activation functions is to introduce non-linearity.

Figure source -- the neural network playground using the Tanh activation function

For example, the identify activation function does not help in grouping non-linear data.

Figure source -- the neural network playground using the identity activation function

How can we train the deep neural network?

We need to use optimization algorithms, such as gradient descent, to help us find a local minimum (or global minimum for convex functions) on the cost function. We need to set a learning rate, which means the pace of moving forward for each update.

$$\min_{\theta} J(\theta) = \min_{\theta} \sum_{i=1}^{n} L(y^{(i)}, \hat{y}^{(i)})$$
$$\theta_{t+1} \leftarrow \theta_t - \alpha \cdot \nabla J(\theta_t)$$
$$\theta: \text{ model parameters}$$

 α : learning rate

t: training step

 $\nabla J(\theta)$: gradient

Gradient is a generalization of derivative. The intuition is that computing the derivative of f(x) at point x_t means computing the slope of the tangent line to f(x) at point x_t .

Exercise 5.1: Perform three gradient descent updates (i.e., compute x_1 , x_2 , and x_3) for one parameter x with the cost function $f(x) = x^2$, using the starting point $x_0 = 9$ and learning rate $\alpha = 0.1$ (with the provided gradient function $\nabla f(x)$ below).

Figure source -- https://vitalflux.com/gradient-descent-explained-simply-with-examples/

We can reach a local minimum of the loss function by following the gradient (i.e., slope).

We need to adjust the learning rate strategically. A large learning rate could lead to divergent behavior in the model. For example, the training loss could wiggle.

Take smaller steps (i.e., smaller learning rate) when the slope is getting small.

How do we adjust the weight after computing the loss for each iteration? To update the weights in previous layers, we need to use the backpropagation algorithm.

Compute the loss (error) for each iteration

Backpropagate the errors

Training in progress...

Figure source -- https://www.3blue1brown.com/lessons/backpropagation

Intuitively speaking, after comparing the prediction and the ground truth, we want to increase the weight for the neuron we care about the most and decrease the others.

Compare the prediction and ground truth

Update the weight for a neuron

Figure source -- https://www.3blue1brown.com/lessons/backpropagation

We apply the same idea to iteratively update all the weights for all the neurons in every previous layer, starting from the last layer, and backpropagate the errors back.

Update the weights for the current layer

···+ ++++++++ $\cdots + \downarrow + \downarrow + \uparrow + \downarrow + \downarrow + \downarrow$ $\cdots + \uparrow + \downarrow + \uparrow + \uparrow + \downarrow + \uparrow \uparrow$ $\cdots + \downarrow + \downarrow + \uparrow + \downarrow + \uparrow + \uparrow + \uparrow \bigcirc$ 0.5) 🛛 🔘 $\cdots + \uparrow + \downarrow + \downarrow + \uparrow + \uparrow + \uparrow + \uparrow \bigcirc$ 0.8 $\cdots + \uparrow + \downarrow + \uparrow + \uparrow + \uparrow + \downarrow$ 1.0 43···+ I+I+I+I+I+I <u>···+ ++</u>↑+↑++++↓ 0.6) +5 $\cdots + \uparrow + \downarrow + \uparrow + \uparrow + \downarrow + \uparrow \bigcirc$ 1.0 6 $\cdots + \uparrow + \downarrow + \downarrow + \uparrow + \downarrow + \uparrow$ 0.0) ···+ ↓+ + **↑** + **↑** + ↓ + ↓ - 8 (0.1) 9 $\cdots + \dagger + \downarrow + \downarrow + \downarrow + \downarrow + \downarrow + \uparrow ($ $\cdots + \uparrow + \uparrow + \downarrow + \uparrow + \uparrow + \downarrow \bigcirc$ $\cdots + \uparrow + \downarrow + \downarrow + \downarrow + \uparrow + \uparrow \bigcirc$

Update the weights for the previous layer

In practice, we use mini-batches (instead of all data) when running gradient descent to increase the speed (and save computer memory) when updating neuron weights.

Divide data randomly into mini-batches

Use mini-batches to approximate the original gradient

Figure source -- https://www.3blue1brown.com/lessons/backpropagation

The backpropagation algorithm applies the chain rule in calculus to compute gradient.

$$\frac{\partial g(f(\theta))}{\partial \theta} = \frac{\partial g}{\partial f} \cdot \frac{\partial f}{\partial \theta}$$

$$\nabla J(\theta_1) = \frac{\partial J(\theta)}{\partial \theta_1} = \frac{\partial J(\theta)}{\partial a^{(3)}} \cdot \frac{\partial a^{(3)}}{\partial z^{(3)}} \cdot \frac{\partial z^{(3)}}{\partial a^{(2)}} \cdot \frac{\partial a^{(2)}}{\partial z^{(2)}} \cdot \frac{\partial a^{(2)}}{\partial \theta_1} \cdot \frac{\partial z^{(2)}}{\partial \theta_1}$$

Figure source and more about backpropagation -- https://www.jeremyjordan.me/neural-networks-training/

Deep neural nets can overfit easily due to a huge number of parameters. How can we deal with overfitting? We can combat overfitting by randomly dropping out neurons with a pre-defined probability (i.e., the dropout technique), which forces the model to avoid paying too much attention to a particular set of features.

We can also combat overfitting by using the regularization technique (also setting its strength factor λ), which regulates model weights to ensure that they are not too large.

Figure source -- https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks#regularization

Increasing regularization strength λ shrinks the coefficients. Lasso specifically shrinks the coefficients to zero (which can be used for feature selection), while Ridge only shrink the coefficients to very small numbers that are close to zero (but not exactly zero).

We can also augment our data on the fly to combat overfitting (i.e., the so-called data augmentation technique), such as randomly rotating, cropping, and changing colors.

Cubuk, E. D., et al. (2019). <u>AutoAugment: Learning augmentation strategies from data</u>. In Proceedings of CVPR conference.

Deep learning models can suffer from vanishing gradient, where the gradient becomes too small during backpropagation, and thus the model weights are hard to update. The example below shows the problem when using the sigmoid activation function.

More about problems in the gradient -- https://karpathy.medium.com/yes-you-should-understand-backprop-e2f06eab496b

During model training, we need to tune hyperparameters, which means the parameters that are set prior to the learning process (unlike model parameters, i.e., model weights).

- Learning rate?
- Batch size?
- Layer size?
- Number of layers?
- Dropout rate?

• • •

- Strength of regularization?
- Activation function?
- Number of epoch?

Common hyperparameter tunning strategies involve grid or random search. Random search is typically considered more effective when there are a lot of hyperparameters.

56

Take-Away Messages

- Deep learning is the idea of stacking many layers of artificial neurons.
- You can change the activation function and loss function to perform different tasks.
- The activation function can transform the weighted sum of the input non-linearly.
- The loss function measures the distance between the ground truth and the prediction.
- Gradient descent is used to help us find a local minimum on the error (cost) function.
- When performing gradient descent, we need to set a learning rate to determine the pace.
- We need to use the backpropagation algorithm to iteratively update the weights in previous layers.
- Using dropout, regularization, or data augmentation can help us combat overfitting.

