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Lecture 5: Deep Learning Overview
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This lecture will give a high-level overview of

deep learning and artificial neurons.



Deep learning is the idea of stacking different types of layers (e.g., artificial neurons) to

perform very complex tasks. The example below is a deep feedforward neural network.
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Image source -- https://atcold.github.io/pytorch-Deep-Learning/en/week02/02-3/


https://atcold.github.io/pytorch-Deep-Learning/en/week02/02-3/

https://www.3blue1brown.com/lessons/neural-networks
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Neurons in the first layer are activated based on the input. Then, neurons are activated layer by layer.


https://www.3blue1brown.com/lessons/neural-networks

Before the deep learning era, machine learning researchers need to extract features

from the data manually. But now, we can delegate feature engineering to the neural net.
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Image source -- https://www.cse.psu.edu/~rtc12/CSE486/lecture31_bpp.pdf



https://www.cse.psu.edu/~rtc12/CSE486/lecture31_6pp.pdf

Instead of relying on manually crafted features, deep learning models can learn

different representations from data automatically (i.e., the so-called deep features).
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http://cs231n.stanford.edu/

Deep learning models can extract features automatically and existed long ago but were

not widespread due to the high demand for computational resources and power.
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Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

LeCun, Y., et al. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE.



https://ieeexplore.ieee.org/abstract/document/726791
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In 2012, AlexNet showed great improvement in classifying images (ImageNet dataset)

using a Convolutional Neural Network on GPUs. Then, the deep learning era started.

dense

1000

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—64,896—64,896—43,264—
4096—4096-1000.

Krizhevsky, A., et al. (2012). ImageNet classification with deep convolutional neural networks. Proceedings of the NeurlPS conference.


https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

Then, deep neural networks went deeper and deeper with different variations.
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. Proceedings of the CVPR conference.

image recognition

He, K., et al. (2016). Deep residual learning for



https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html

For sequential data, we can use the Recurrent Neural Network (RNN) architecture.

LSTM unit

Figure source -- https://en.wikipedia.org/wiki/Recurrent_neural_network
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https://en.wikipedia.org/wiki/Recurrent_neural_network

For machine translation, the sequence-to-sequence model (which is an RNN) uses the
encoder-decoder architecture. The encoder takes the input in one language, and the

decoder outputs the translation to another language.

Encoder Decoder
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Source -- https://d2l.ai/chapter_recurrent-modern/seg2seq.html



https://d2l.ai/chapter_recurrent-modern/seq2seq.html

We can use Autoencoder (based on combining encoder-decoder architecture) to

perform image segmentation (using convolutional layers).

Convolutional Encoder-Decoder

Output

Pooling Indices

A

RGB Image B conv + Batch Normalisation + RelU Segmentation
B Pooling Y Upsampling Softmax

Fig. 2. Aniillustration of the SegNet architecture. There are no fully connected layers and hence it is only convolutional. A decoder upsamples its input
using the transferred pool indices from its encoder to produce a sparse feature map(s). It then performs convolution with a trainable filter bank to den-
sify the feature map. The final decoder output feature maps are fed to a soft-max classifier for pixel-wise classification.

Badrinarayanan, V., et al. (2017). SegNet: A deep convolutional encoder-decoder architecture for image segmentation. |IEEE.



https://ieeexplore.ieee.org/document/7803544

A recent state-of-the-art is the Transformer architecture (based on encoder-decoder).

Vision Transformer (ViT)
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable

“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

Dosovitskiy, A., et al. (2021). An image is worth 16x16 words: Transformers for image recognition at scale. In the ICLR conference.
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https://arxiv.org/pdf/2010.11929.pdf

We can also use deep learning to generate data, such as the Generative Adversarial
Network structure, which combines a generator (that converts noise to a fake sample)

and a discriminator (that tries to identity if a sample is fake or real).

Real \ 2\\_
Samples \ Discriminator |

Random [(zanarator SN = B - \ —XE—
noise | g Ny Ul = T —
—_— - i .
ﬁ /@ i 2 - Source of Figure
g < BJ:“-"‘-“D M\
Generated
Sample

More about the Generative Adversarial Network -- https://sthalles.github.io/intro-to-gans/ 14



https://sthalles.github.io/intro-to-gans/
https://towardsdatascience.com/image-generation-in-10-minutes-with-generative-adversarial-networks-c2afc56bfa3b
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YOLO is a deep learning model for object detection.



https://pjreddie.com/darknet/yolo/

SegNet is a deep learning model for scene segmentation.


https://arxiv.org/abs/1511.00561

Teachable Machine is a tool that allows people to train a machine for various applications.
[ )



https://teachablemachine.withgoogle.com/

https://www.deepmind.com/blog/alphastar-mastering-the-real-time-strategy-game-starcraft-ii
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This link has a short highlight about how AlphaStar plays StarCraft II.
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https://www.deepmind.com/blog/alphastar-mastering-the-real-time-strategy-game-starcraft-ii
https://youtube.com/clip/Ugkx5vczPfVNZpY8CTigW-Ab8yMymNJ4GsJP

DALL-E 2 uses deep learning to create realistic images and art from text descriptions.



https://openai.com/dall-e-2/

& stable Diffusion 2-1-aHuge X  +

Cc 25 huggingface.co/spaces/stabilityaif/stable-diffusion

¥ Spaces = stable-diffusion © O like % Running on CPU UPGRADE App Files Community i)

+ Stable Diffusion 2.1 Demo

Stable Diffusion 2.1 is the latest text-to-image model from StabilityAl. Access Stable Diffusion 1 Space here
For faster generation and API access you can try DreamStudio Beta.

Interior of a tavern in a fantasy Dungeons & Dragons world in photorealistic style
Generate image
low quality, ugly

Stable Diffusion -- https://huggingface.co/spaces/stabilityai/stable-diffusion
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https://huggingface.co/spaces/stabilityai/stable-diffusion

o000 . Building Image Classifier with I X +

& > C @ chat.openai.com/chat/058f671e-e74a-43b... (h Yr % O
= Building Image Classifier with PyTorch

Explain the following python code:

def array_to_event(array, max_len=None):
event =[]
array = copy.deepcopy (array)
array.insert(0, 0) # insert a zero at the begining
if max_len is not None and max_len < 1: max_len = None
for i in range(len(array)-1):
a_i1 = array[i+1]
diff = a_i1 - array[i]
if diff == 1: # from O to 1
event.append([i,i])
if max_len == 1:
array[i+1] = O # restart next event
elif diff == 0: # from 0 to O, or from 1to 1
ifa_i1==1:#from1to1
event[-1][1] =i
if max_len is not None and i-event[-1][0]+1 >= max_len:
array[i+1] = O # restart next event
return event

@ This Python function, “array_to_event", takes an input array as its
argument, and converts it into a list of events. An "event" here refers to a
sequence of consecutive 1's in the input array.

The function first creates an empty list called “event", which will store the
events as they are detected. It then creates a copy of the input array using
the ~copy.deepcopy()" method, to avoid modifying the original array.

Next, the function inserts a 0 at the beginning of the copied array, to ensure,
that the first element in the input array is compared with 0.

v s

ChatGPT Feb 13 Version. Free Research Preview. Our goal is to make Al systems more natural and safe to

interact with. Your feedback will help us improve.

o000 @ PyTorch CNN Training. X +

& > C @ chat.openai.com/chat/8483920b-8423-46.. (h Yr % O

PyTorch CNN Training. +

Can you provide an example about how to train a CNN model in pytorch?

4

Sure, here's an example of how to train a simple convolutional neural network
(CNN) in PyTorch. In this example, we'll train a CNN to classify images from
the CIFAR-10 dataset.

First, let's import the necessary packages:

python D Copy code

import torch

import torch.nn as nn
import torch.optim as optim
import torchvision

import torchvision.transforms as transforms

Next, we'll define the hyperparameters for our model:

python D Copy code

num_epochs
batch_size =
learning_rate =

[

Now, we'll load the CIFAR-10 dataset and apply some data augmentation:

python ) Copy code

N2
transform_train = transforms.Compose([

v s

ChatGPT Feb 13 Version. Free Research Preview. Our goal is to make Al systems more natural and safe to

interact with. Your feedback will help us improve.

000 . Building Image Classifier with I X + v

& > C @ chat.openai.com/chat/058f671e-e74a-43b... (h Y« % O

Building Image Classifier with PyTorch +

Can you explain how gradient descent works?

Sure, | can explain how gradient descent works. Gradient descent is an
optimization algorithm that is commonly used to minimize a function's value
by iteratively adjusting its parameters.

Here's how it works:

1. First, you start with an initial set of parameters for the function you want
to optimize.

2. Then, you calculate the gradient of the function with respect to each of
the parameters. The gradient is a vector that points in the direction of
steepest ascent of the function.

3. Next, you take a step in the opposite direction of the gradient to descend
along the steepest slope of the function. The size of the step is
determined by a hyperparameter called the learning rate.

4. You repeat this process, updating the parameters based on the negative
gradient of the function, until you reach a minimum point or until you
reach a stopping criterion.

The goal of gradient descent is to find the set of parameters that minimize
the value of the function. By following the negative gradient, we are

iteratively moving towards the minimum point of the function.

There are different variations of gradient descent, including batch gradient
descent, stochastic gradient descent, and mini-batch gradient descent,
which differ in how they update the parameters and how they use the data to
calculate the gradients. 3

i <

ChatGPT Feb 13 Version. Free Research Preview. Our goal is to make Al systems more natural and safe to

interact with. Your feedback will help us improve.

ChatGPT is a large language model developed by OpenAl to have natural conversations with people.

21


https://openai.com/blog/chatgpt/

Now let us look at how a deep neural net

works, starting from the artificial neuron.



An artificial neuron can convert feature x to prediction y by using a weighted sum and

an

Features

®
J

Artificial Neuron

x;’ means the jt" feature of the i*" data point

. Then, we need to define a loss function based on the task type.

_xii)_

. T (i MO
weighted sum = wTx® +p = [W1 w2z - Wp].|*2 | +p

| X

0
wlx® + p
Prediction

p .
Minimize Error/Cost/Objective

n
Loss . .
~ > min/(6 =minZL OO
L(y,9) g/ (6) = - &.5%)

where 6 = {w, b}
Ground Truth
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We need to minimize the error/cost to find the optimal parameter set 8 = {w, b}.

Notice that the prediction 9 is a function of 8, meaning $(8) = y(w,b) = a(wlx + b).

_xii)_

. T (i MO
weighted sum = wTx® +p = [W1 w2z - Wp].|*2 | +p

@
- owTx® 4+ p
Ac‘;l\gglon ( ) Prediction

| X

p .
Minimize Error/Cost/Objective

n

Loss _ _ L
Artificial Neuron Ly,9) | m@m](@) = m@mE L(y®,5®)
Features i=1

where 6 = {w, b}
xj(i) means the jt" feature of the i*" data point Ground Truth

24



We have learned how to classify spam and ham using the perceptron algorithm with an

error metric. We can also formulate the error in another way.

n n
error = z —y@ . £(x®) for each misclassified point = z max(—y® - @, 0) for all points
i=1 i=1
A .
y @ + Spam
S~ » f(x)>0
distance . (\ ,) misclassified i [ew 4+ 16 | | —
o< -y f) | _z " Lo
i A(.l).----- + + L2 :...$.. . ; .~
XZ number y -----h--- 1.0;.. o “‘ '..'.o ~0: ::’o
of digits -""~~-___ f(x) = T e “!'_, -
Teeel AT T
0.4 »'. ° . ° .‘.o . "..
Ham 02‘;.’-.'... s . o
y=-1 () <0 RPN
> 0'%.0 B 0.‘2 O.KZ .O‘lG 0..8 1.‘0 1f2 l.‘4 1.6

X1: number of special characters

Rosenblatt’s Perceptron Learning Algorithm: section 4.5.1 in book https://hastie.su.domains/ElemStatLearn/ 25



https://hastie.su.domains/ElemStatLearn/

We can represent the perceptron classifier using an artificial neuron. In this case, we use

the identity function (as the activation) with the soft perceptron loss.

Activation

o(x)

Identify: a(x) = x

5.0 A

2.5 1

0.0 A

-2.5 4

figure source
-5.0 4

-5 0 5

o(wTx® + b)

Loss
L(y,y)

f(s) = max(—s,0)

A

Soft perceptron loss

L(y,y) = max(~y - 3,0)

n
i=1

More information about perceptron in a neural net -- https://engineering.purdue.edu/ChanGroup/ECE595/files/Lecture16_perceptron.pdf
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https://engineering.purdue.edu/ChanGroup/ECE595/files/Lecture16_perceptron1.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0893608021000344

We have also learned linear regression, where we need to find a set of coefficients that

can minimize the squared distances between all the predictions and ground truths.

n n

Y y=y+e minze(i) =mﬁin2(y(i)—x(i).3)2
' 1

9= f(X) = XB b4 £
= min(y — XB)" (v — Xp)

Y =-1.02X + 123.07

More about linear regression -- https://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/13/lecture-13.pdf 27



https://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/13/lecture-13.pdf

We can also represent the linear regression model using an artificial neuron. In this case,

we use the identity activation function with the squared error loss function.

Range of predicted values: (-10,000 to 10,000) | True value: 100
le8

10

08

06

MSE Loss

Activation o(w'x® +b) )
o (x) °
Loss Squared error loss
Identify: a(x) = x L(y,y) Ly,y) =y —9)*
5.0 A n
2.5 1 ] ()2
0.0 4 ](0) = Z(y(l) _ y(l))
7 figure source =
-5.0 ‘_15 6 5',

MSE loss -- https://heartbeat.comet.ml/5-regression-loss-functions-all-machine-learners-should-know-4fb140e9d4b0



https://heartbeat.comet.ml/5-regression-loss-functions-all-machine-learners-should-know-4fb140e9d4b0
https://www.sciencedirect.com/science/article/abs/pii/S0893608021000344

We can replace the activation and loss functions with different ones to build another

model. The example below uses hinge loss, which becomes Support Vector Machine.

Loss
Identify: o(x) = x L(y,9)

5.0 -
2.5
0.0 -
_25 .
figure source
—5.0 1 T T T
-5 0 5

penalty (loss) size

Activation U(WTx(i) +b) \
o(x) §
| e z il

0 :
incorrectly classified ’ correctly classified

distance from boundary

Hinge loss

L(y,y) =max(1—-y-¥,0)

n
i=1

Hinge loss -- https://math.stackexchange.com/questions/782586/how-do-you-minimize-hinge-loss
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https://math.stackexchange.com/questions/782586/how-do-you-minimize-hinge-loss
https://www.sciencedirect.com/science/article/abs/pii/S0893608021000344

Support Vector Machine (right figure) finds the maximum margin y separating
hyperplane h(x) for classification, while the perceptron classitier finds a separating

hyperplane if it exists (e.g., blue or red line on the left figure).

\
N—> )

perceptron classifier h(x) = sign(wTx + b)

Figure source -- https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote09.html
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If we replace the activation function to sigmoid and use the logistic loss (i.e., the binary

version of cross-entropy loss), the neuron becomes a Logistic Regression model.

4
3

2

Activation U(WTx(i) +b) )
a(x)
0

0.0 0.2 0.4 0.6 0.8 1.0

Loss Binary cross-entropy loss
Sigmoid: o(x) =1/(1+e7%) L(y,9) 2
1.00 L(y,y) =— ) y.logy, for 2 classes
0.75 - =1
o n 2
figure source [ ~ (i
0.00 -_,5 jf)—é @ ](0) = — Z Z ygl) lOg yc(l)

i=1c=1

Cross-entropy loss -- https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a



https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
https://www.sciencedirect.com/science/article/abs/pii/S0893608021000344

Logistic Regression model fits a logistic curve to the data to perform classification tasks.

Linear vs. Losjis‘tic Re,gression
= A
1
—————————— 088 v -~
Has smoke (class 1)
—» >
o) ‘ % of smoke pixels #
Locistic reqression fits a
Straight line i / 7 7
trmgh‘t lme 'S V\O't A 3(‘80\1: P‘t lOg?St‘Q curve to t"\e POMJCS
No smoke (class 0)

Figure source -- https://www.kdnuggets.com/building-predictive-models-logistic-regression-in-python



https://www.kdnuggets.com/building-predictive-models-logistic-regression-in-python

Many activation functions exist for various purposes. For example, in classification,

ReLU is typical for the middle layers, and sigmoid (or softmax) is for the final layer.

Sigmoid Tanh RelLU Leaky RelLU
1 e’ —e? B 9(2z) = max(ez, 2)
9(z) = 1te-? 9(z) = e+ ez 9(z) = max(0, z) with e < 1
9(z) t 9(z) ¢ 9(2) 1
- 1 - 1 -
1 I{ 1 %
—4 0 4 0 1

Figure source -- https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning#nn 33
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Also, there are different loss functions for different types of tasks. For example, the

least squared error is for regression, and the others below are for classification.

Least squared error Logistic loss Hinge loss Cross-entropy
1 —|ylog(z) + (1 — y) log(1 —
i(y——z)z log(1 + exp(—yz)) max(0,1 — yz) [ zﬂ
VA YA yA
Y :l -1 ] Y :l —1 - y=0 i ]
Z: yA yA yA
y€R v " i > (l) 1 >

y=1 y=1

\_Y_I

How different is z from y, where y is the ground truth, and z is the prediction.

Figure source -- https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-supervised-learning#notations
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The major reason of using activation functions is to introduce non-linearity.

C @ playground.tensorflow.org/#a

b Epoch Learning rate Activation Regularization Regularization rate Problem type
>l
000,706 0.03 - Tanh - None - 0 - Classification -

DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT

Which dataset do Which properties do Test loss 0.001

you want to use? you want to feed in? ini

i & LY = Training loss 0.000
8 4 neurons 1 neuron
®
X —— 1 LI ]]]
‘ =~ _———::—’—'—"““D'
~. ‘,—' ,&
~ - R
. " e 7
X2 S — o e e ¢¢
4
Ratio of training to 5 ," The outputs are
. = ' mixed with varying
test data: 50% - " weights, shown =
— o - by the thickness
. of the lines.
Noise: 0
([ J
o«
Batch size: 10 Oy \ This is the output
—e from one neuron. |
Hover to see it 0
larger.
REGENERATE

Colors shows
data, neuron and '1 !
weight values. '

[J showtestdata  [] Discretize output

Figure source -- the neural network playground using the Tanh activation function
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For example, the identify activation function does not help in grouping non-linear data.

& @ playground.tensorflow.org/#activation=lii

Y

DATA

Which dataset do
you want to use?

o

Ratio of training to
test data: 50%
—

Noise: 0

Batch size: 10

—

REGENERATE

Epoch

000,386

FEATURES

Which properties do
you want to feed in?

Learning rate

0.03

+

+ -

4 neurons

This is the output
from one neuron.
Hover to see it
larger.

Activation Regularization

Linear v None

— 2 HIDDEN LAYERS

4+ -

1 neuron

The outputs are
mixed with varying
weights, shown
by the thickness
of the lines.

Regularization rate

0

Problem type

Classification

OUTPUT

Test loss 0.496
Training loss 0.498

Colors shows

data, neuron and ! !
) B

weight values.

(] Show testdata  [] Discretize output

Figure source -- the neural network playground using the identity activation function 36
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How can we train the deep neural network?

.

B
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@ Weights update
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Backpropagation

®

Forward propagation
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Figure source -- https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks#running-nn
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We need to use optimization algorithms, such as gradient descent, to help us find a

local minimum (or global minimum for convex functions) on the cost function. We need

to set a learning rate, which means the pace of moving forward for each update.

n
minJ(6) = min » L(y®,5©)
=1

Orp1 «— 0 —a-VJ(6;)

6: model parameters

a: learning rate

t: training step

VJ(0): gradient

Figure source -- https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-supervised-learning#notations 38
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Gradient is a generalization of derivative. The intuition is that computing the derivative

of f(x) at point x; means computing the slope of the tangent line to f(x) at point x;.

Graph of fix) = x? and Tangent Line at x =9

100 +

80 -

60 A

fix)

40 A

20 A

R f(x)=x2
0+4{—=—= Tangentatx=9 /

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0



Exercise 5.1: Perform three gradient descent updates (i.e., compute x,, x,, and x3) for
one parameter x with the cost function f(x) = x?, using the starting point x, = 9 and

learning rate @ = 0.1 (with the provided gradient function Vf(x) below).

Gradient Descent on f(x) = x2 f(x) — xZ

100

Vf(x) = 2x

80

Xep1 < X — @ Vf(xe)

60 [

40t
x: model parameter

2ok «: learning rate

t: training step

=100 =75 =50 25 0.0 2.5 5.0 7.5 10.0 Vf(x): gradient

Figure source -- https://vitalflux.com/gradient-descent-explained-simply-with-examples/ 4018
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https://wwvb.3b|ue1 brown.com/lessons/gradient-descent

1 C'(w)

We can reach a local minimum of the loss function by following the gradient (i.e., slope). N


https://www.3blue1brown.com/lessons/gradient-descent

We need to adjust the learning rate strategically. A large learning rate could lead to

divergent behavior in the model. For example, the training loss could wiggle.

1(6)

Too low Just right Too high
4"' J (9) ' |"| J (9) \ ‘l"
"I || l," l‘| "I‘
/
PV S
0 0

A small learning rate
requires many updates
before reaching the
minimum point

The optimal learning
rate swiftly reaches the

minimum point

Figure source -- https://www.jeremyjordan.me/nn-learning-rate/

Too large of a learning rate
causes drastic updates
which lead to divergent
behaviors

42


https://www.jeremyjordan.me/nn-learning-rate/

https://wva.3b|ue1 brown.com/lessons/gradient-descent

T C'(w)

Take smaller steps (i.e., smaller learning rate) when the slope is getting small. N


https://www.3blue1brown.com/lessons/gradient-descent

How do we adjust the weight after computing the loss for each iteration? To update the

weights in previous layers, we need to use the backpropagation algorithm.

Compute the loss (error) for each iteration Backpropagate the errors

> Training in
Cost of
A—a ; one example
N . .’/i% :

\
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Figure source -- https://www.3blue 1Tbrown.com/lessons/backpropagation
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Intuitively speaking, after comparing the prediction and the ground truth, we want to

increase the weight for the neuron we care about the most and decrease the others.

Compare the prediction and ground truth Update the weight for a neuron

'@

784 <

Figure source -- https://www.3blue 1Tbrown.com/lessons/backpropagation
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We apply the same idea to iteratively update all the weights for all the neurons in every

previous layer, starting from the last layer, and backpropagate the errors back.

Update the weights for the current layer Update the weights for the previous layer

R A S R AR

PERNIEE EE N RN\ O— B-J
R PR R SRS RN I \\_-. @ - =4
4 1+1+1+1+r+1 @0 8 Oi
bt +1+1.; 1 o &3
& pFd LT+ 72@ . o
ot \_1.3 o 0
SRR .| ngp 14 &/ o
CH R @R XD 15 3/ o
N ESER RN ‘A"‘?@gm @/ Ol
o+ r+1+1+1+1+1. N 7 /Y O
R RN R / ® 8 @)/ O
it i+t @ @ 9 &/ O
SRR ® Q1
SRS BN PTG Q O
b+ 1+ 1O O O

Figure source -- https://www.3blue1brown.com/lessons/backpropagation
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In practice, we use mini-batches (instead of all data) when running gradient descent to

increase the speed (and save computer memory) when updating neuron weights.

Divide data randomly into mini-batches Use mini-batches to approximate the original gradient

“Mini-batches”

IV ACAEIRY AR EARAES
3 e|)|7)F 672|077
1124|327 3L 6|7 0|5
60|36 187793985

Figure source -- https://www.3blue1brown.com/lessons/backpropagation
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The backpropagation algorithm applies the chain rule in calculus to compute gradient.

g(f(©) _dg of

00  Of 06

input neuron

V](Ql) =

hidden neuron

linear combination

activation

>

02
(%)

\—/

aJ(8) 0J(6) 0a® 5z3 9a®@ 5@

00, 9a® 9z8 0a®@ 9z 96,

output neuron performance

linear combination activation

J(8)=4(y-a®)

”

203)=9,3(2 » aBl=g(2)

| 8 | 8 - 7
az ~ < :»:/ ///
26, ‘ :

0z
aa‘z’)

Figure source and more about backpropagation -- https://www.jeremyjordan.me/neural-networks-training/
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Deep neural nets can overfit easily due to a
huge number of parameters. How can we

deal with overtitting?



We can combat overfitting by randomly dropping out neurons with a pre-defined
probability (i.e., the dropout technique), which forces the model to avoid paying too

much attention to a particular set of features.

Figure source -- https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks#regularization
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We can also combat overfitting by using the regularization technique (also setting its

strength factor 4), which regulates model weights to ensure that they are not too large.

LASSO Ridge Elastic Net
« Shrinks coefficients to O . Tradeoff between variable selection
. . Makes coefficients smaller .
- Good for variable selection and small coefficients
A A A
s pe ST % )
/ L0 g +0") +0°) /),

191l <1 \/ 16]]2 < 1 \/1 )[10]]1 + ]|0]3 < 1

e+ A6 N6 et A (1= @) 161} + 1613]
AER AeR AeR,a€0,1]

Figure source -- https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks#regularization
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Increasing regularization strength 4 shrinks the coefficients. Lasso specifically shrinks the
coefficients to zero (which can be used for feature selection), while Ridge only shrink

the coefficients to very small numbers that are close to zero (but not exactly zero).

Lasso Regularization (L1 norm) Ridge Regularization (L2 norm)
200 -
200 -
150 -
.E) 100 - .5 1007
2 o
&£ b
[} o
Q 50 @) 0-
@) @)
0_
-100 -
_50 -
Larger 1 < Smaller 2 Larger 1 <« Smaller 4
minj(6) + 21161l minj(6) + Al6ll;
h— L) 2 2
101l = 1011 + 162 | + -+ + |6, 101, = \/(91)2 +(6,)% + -+ (6,)
Source: https://scikit-learn.org/stable/auto_examples/linear_model/plot_logistic_path.html Source: https://scikit-learn.org/stable/auto_examples/linear_model/plot_ridge_path.html
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We can also augment our data on the fly to combat overfitting (i.e., the so-called data

augmentation technique), such as randomly rotating, cropping, and changing colors.

Original Sub-policy 1 Sub-policy 2 Sub-policy 3 Sub-policy 4  Sub-policy 5

7
R
l -

ShearX, 0.9, 7 ShearY, 0.7, 6 ShearX, 0.9, 4 Invert, 0.9, 3 ShearY, 0.8, 5
Invert, 0.2, 3 Solarize, 0.4, 8 AutoContrast, 0.8, 3 Equalize, 0.6, 3 AutoContrast, 0.7, 3

Batch 1

Batch 2

Batch 3

Cubuk, E. D., et al. (2019). AutoAugment: Learning augmentation strategies from data. In Proceedings of CVPR conference.



https://openaccess.thecvf.com/content_CVPR_2019/html/Cubuk_AutoAugment_Learning_Augmentation_Strategies_From_Data_CVPR_2019_paper.html

Deep learning models can suffer from vanishing gradient, where the gradient becomes
too small during backpropagation, and thus the model weights are hard to update. The

example below shows the problem when using the sigmoid activation function.

sigmoid function derivative of sigmoid
1.0 | . 1.0 |- .
0.8 | ] 0.8 |- S s _
derivative is zero at tails

0.6 |- . 0.6 |- ;
0.4 | . 0.4 | .
0.2} { o2t /\ .
00 - ' 4 0.0 P .

1 1 1 1 L | | | | 1

-10 -5 0 5 10 -10 -5 0 5 10

More about problems in the gradient -- https://karpathy.medium.com/yes-you-should-understand-backprop-e2f06eab496b
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During model training, we need to tune hyperparameters, which means the parameters

that are set prior to the learning process (unlike model parameters, i.e., model weights).

* Learning rate?
« Batch size?

* Layersize?

« Number of layers?

« Dropout rate?

 Strength of regularization?

e Activation function?

* Number of epoch? €L Y

More info --


https://medium.com/pytorch/accelerate-your-hyperparameter-optimization-with-pytorchs-ecosystem-tools-bc17001b9a49

Common hyperparameter tunning strategies involve grid or random search. Random

search is typically considered more effective when there are a lot of hyperparameters.

Grid Layout Random Layout
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Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of machine learning research, 13(2).
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Take-Away Messages

Deep learning is the idea of stacking many layers of artificial neurons.

You can change the activation function and loss function to perform different tasks.

The activation function can transform the weighted sum of the input non-linearly.

The loss function measures the distance between the ground truth and the prediction.

Gradient descent is used to help us find a local minimum on the error (cost) function.

When performing gradient descent, we need to set a learning rate to determine the pace.

We need to use the backpropagation algorithm to iteratively update the weights in previous layers.

Using dropout, regularization, or data augmentation can help us combat overfitting.



Questions?




