
Lecturer: Yen-Chia Hsu

Date: Feb 2024

Data Science
Lecture 5: Deep Learning Overview

1

2

This lecture will give a high-level overview of

deep learning and artificial neurons.

Deep learning is the idea of stacking different types of layers (e.g., artificial neurons) to

perform very complex tasks. The example below is a deep feedforward neural network.

3Image source -- https://atcold.github.io/pytorch-Deep-Learning/en/week02/02-3/

https://atcold.github.io/pytorch-Deep-Learning/en/week02/02-3/

4

https://www.3blue1brown.com/lessons/neural-networks

Neurons in the first layer are activated based on the input. Then, neurons are activated layer by layer.

https://www.3blue1brown.com/lessons/neural-networks

Before the deep learning era, machine learning researchers need to extract features

from the data manually. But now, we can delegate feature engineering to the neural net.

5Image source -- https://www.cse.psu.edu/~rtc12/CSE486/lecture31_6pp.pdf

Manually
Extract

Features

Build
ModelImages Predictions

Features

https://www.cse.psu.edu/~rtc12/CSE486/lecture31_6pp.pdf

Instead of relying on manually crafted features, deep learning models can learn

different representations from data automatically (i.e., the so-called deep features).

6Image source -- http://cs231n.stanford.edu/

http://cs231n.stanford.edu/

Deep learning models can extract features automatically and existed long ago but were

not widespread due to the high demand for computational resources and power.

7LeCun, Y., et al. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE.

https://ieeexplore.ieee.org/abstract/document/726791

In 2012, AlexNet showed great improvement in classifying images (ImageNet dataset)

using a Convolutional Neural Network on GPUs. Then, the deep learning era started.

8Krizhevsky, A., et al. (2012). ImageNet classification with deep convolutional neural networks. Proceedings of the NeurIPS conference.

https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

Then, deep neural networks went deeper and deeper with different variations.

9He, K., et al. (2016). Deep residual learning for image recognition. Proceedings of the CVPR conference.

https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html

For sequential data, we can use the Recurrent Neural Network (RNN) architecture.

10Figure source -- https://en.wikipedia.org/wiki/Recurrent_neural_network

https://en.wikipedia.org/wiki/Recurrent_neural_network

For machine translation, the sequence-to-sequence model (which is an RNN) uses the

encoder-decoder architecture. The encoder takes the input in one language, and the

decoder outputs the translation to another language.

11Source -- https://d2l.ai/chapter_recurrent-modern/seq2seq.html

https://d2l.ai/chapter_recurrent-modern/seq2seq.html

We can use Autoencoder (based on combining encoder-decoder architecture) to

perform image segmentation (using convolutional layers).

12Badrinarayanan, V., et al. (2017). SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE.

https://ieeexplore.ieee.org/document/7803544

A recent state-of-the-art is the Transformer architecture (based on encoder-decoder).

13Dosovitskiy, A., et al. (2021). An image is worth 16x16 words: Transformers for image recognition at scale. In the ICLR conference.

https://arxiv.org/pdf/2010.11929.pdf

We can also use deep learning to generate data, such as the Generative Adversarial

Network structure, which combines a generator (that converts noise to a fake sample)

and a discriminator (that tries to identify if a sample is fake or real).

14More about the Generative Adversarial Network -- https://sthalles.github.io/intro-to-gans/

Source of Figure

https://sthalles.github.io/intro-to-gans/
https://towardsdatascience.com/image-generation-in-10-minutes-with-generative-adversarial-networks-c2afc56bfa3b

15
YOLO is a deep learning model for object detection.

https://pjreddie.com/darknet/yolo/

16
SegNet is a deep learning model for scene segmentation.

https://arxiv.org/abs/1511.00561

17
Teachable Machine is a tool that allows people to train a machine for various applications.

https://teachablemachine.withgoogle.com/

18

https://www.deepmind.com/blog/alphastar-mastering-the-real-time-strategy-game-starcraft-ii

This link has a short highlight about how AlphaStar plays StarCraft II.

https://www.deepmind.com/blog/alphastar-mastering-the-real-time-strategy-game-starcraft-ii
https://youtube.com/clip/Ugkx5vczPfVNZpY8CTigW-Ab8yMymNJ4GsJP

19
DALL·E 2 uses deep learning to create realistic images and art from text descriptions.

https://openai.com/dall-e-2/

20Stable Diffusion -- https://huggingface.co/spaces/stabilityai/stable-diffusion

https://huggingface.co/spaces/stabilityai/stable-diffusion

21
ChatGPT is a large language model developed by OpenAI to have natural conversations with people.

https://openai.com/blog/chatgpt/

22

Now let us look at how a deep neural net

works, starting from the artificial neuron.

An artificial neuron can convert feature 𝑥 to prediction "𝑦 by using a weighted sum and

an activation function. Then, we need to define a loss function based on the task type.

23

𝑥!
(#)

⋮
𝑥%
(#)

𝑥&
(#)

"𝑦(#)

𝑦(#)

weighted	sum = 𝑤!𝑥(#) + 𝑏 = 𝑤% 𝑤& ⋯ 𝑤' ⋅

𝑥%
#

𝑥&
#

⋮
𝑥'
#

+ 𝑏

$ 𝜎(𝑤!𝑥 # + 𝑏)Activation
𝜎(𝑥)

Artificial Neuron

𝑤! 𝑏

𝑤%

𝑤&

Prediction

Ground Truth

Loss
𝐿 𝑦, :𝑦

Error/Cost/Objective

𝐽 𝜃 ==
#(%

)

𝐿 𝑦(#), :𝑦(#)

where	𝜃 = {𝑤, 𝑏}
Features

="
!"#

$

−𝑦 ! ⋅ 𝑓(𝑥(!))

24

for each misclassified point

0

10

20

30

40

50

0 10 20 30 40 50

misclassified

𝑥!: number of special characters

𝑥%: number
of digits 𝑓 𝑥 = 0

𝑦 = +1

Spam
𝑓 𝑥 > 0

Ham
𝑓 𝑥 < 0 𝑦 = −1

distance
∝ −𝑦 ⋅ 𝑓 𝑥

We have learned how to classify spam and ham using the perceptron algorithm with an

error metric.

Rosenblatt’s Perceptron Learning Algorithm: section 4.5.1 in book https://hastie.su.domains/ElemStatLearn/

error ="
!"#

$

max −𝑦 ! ⋅ -𝑦 ! , 0 for all points

We can also formulate the error in another way.

"𝑦(#)

𝑦(#)

https://hastie.su.domains/ElemStatLearn/

We can represent the perceptron classifier using an artificial neuron. In this case, we use

the identify function (as the activation) with the soft perceptron loss.

25More information about perceptron in a neural net -- https://engineering.purdue.edu/ChanGroup/ECE595/files/Lecture16_perceptron1.pdf

𝑥!
(#)

⋮
𝑥%
(#)

𝑥&
(#)

𝑤! 𝑏

𝑤%

𝑤&

𝜎(𝑤!𝑥 # + 𝑏)
"𝑦(#)

𝑦(#)

Loss
𝐿 𝑦, :𝑦

$ Activation
𝜎(𝑥)

Identify: 	𝜎 𝑥 = 𝑥 𝐿 𝑦, :𝑦 = max −𝑦 ⋅ :𝑦, 0

Soft perceptron loss

figure source

𝐽(𝜃) ==
#(%

)

max −𝑦 # ⋅ :𝑦 # , 0

https://engineering.purdue.edu/ChanGroup/ECE595/files/Lecture16_perceptron1.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0893608021000344

26

We have also learned linear regression, where we need to find a set of coefficients that

can minimize the squared distances between all the predictions and ground truths.

𝑦(#)

"𝑦(#)

𝑦 = "𝑦 + 𝜖
"𝑦 = 𝑓 𝑋 = 𝑋𝛽

𝜖(#) = 𝑦(#) − 𝑥 # 𝛽
%

min
'
$
#(!

)

𝜖(#) = min
'
$
#(!

)

𝑦(#) − 𝑥 # 𝛽
%

= min
'

𝑦 − 𝑋𝛽 * 𝑦 − 𝑋𝛽

More about linear regression -- https://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/13/lecture-13.pdf

https://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/13/lecture-13.pdf

We can also represent the linear regression model using an artificial neuron. In this case,

we use the identity activation function with the squared error loss function.

27

Identify: 	𝜎 𝑥 = 𝑥

𝑥!
(#)

⋮
𝑥%
(#)

𝑥&
(#)

𝑤! 𝑏

𝑤%

𝑤&

𝜎(𝑤!𝑥 # + 𝑏)
"𝑦(#)

𝑦(#)

Loss
𝐿 𝑦, :𝑦

$ Activation
𝜎(𝑥)

MSE loss -- https://heartbeat.comet.ml/5-regression-loss-functions-all-machine-learners-should-know-4fb140e9d4b0

figure source

𝐿 𝑦, :𝑦 = 𝑦 − :𝑦 &

Squared error loss

𝐽(𝜃) ==
#(%

)

𝑦(#) − :𝑦(#)
&

https://heartbeat.comet.ml/5-regression-loss-functions-all-machine-learners-should-know-4fb140e9d4b0
https://www.sciencedirect.com/science/article/abs/pii/S0893608021000344

We can replace the activation and loss functions with different ones to build another

model. The example below uses hinge loss, which becomes Support Vector Machine.

28

Identify: 	𝜎 𝑥 = 𝑥

𝑥!
(#)

⋮
𝑥%
(#)

𝑥&
(#)

𝑤! 𝑏

𝑤%

𝑤&

𝜎(𝑤!𝑥 # + 𝑏)
"𝑦(#)

𝑦(#)

Loss
𝐿 𝑦, :𝑦

$ Activation
𝜎(𝑥)

Hinge loss -- https://math.stackexchange.com/questions/782586/how-do-you-minimize-hinge-loss

figure source

𝐿 𝑦, :𝑦 = max 1 − 𝑦 ⋅ :𝑦, 0

Hinge loss

𝐽(𝜃) ==
#(%

)

max 1 − 𝑦 # ⋅ :𝑦 # , 0

https://math.stackexchange.com/questions/782586/how-do-you-minimize-hinge-loss
https://www.sciencedirect.com/science/article/abs/pii/S0893608021000344

If we replace the activation function to sigmoid and use the logistic loss (i.e., the binary

version of cross-entropy loss), the neuron becomes a Logistic Regression model.

29

Sigmoid: 	𝜎 𝑥 = 1/(1 + 𝑒*+)

𝑥!
(#)

⋮
𝑥%
(#)

𝑥&
(#)

𝑤! 𝑏

𝑤%

𝑤&

𝜎(𝑤!𝑥 # + 𝑏)
"𝑦(#)

𝑦(#)

Loss
𝐿 𝑦, :𝑦

$ Activation
𝜎(𝑥)

Cross-entropy loss -- https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a

figure source

𝐿 𝑦, :𝑦 = −=
,(%

&

𝑦, log :𝑦, 	for	2	classes

Binary cross-entropy loss

𝐽 𝜃 = −=
#(%

)

=
,(%

&

𝑦,
log :𝑦,

#

https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
https://www.sciencedirect.com/science/article/abs/pii/S0893608021000344

Many activation functions exist for various purposes. For example, in classification,

ReLU is typical for the middle layers, and sigmoid (or softmax) is for the final layer.

30Figure source -- https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning#nn

https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning

Also, there are different loss functions for different types of tasks. For example, the

least squared error is for regression, and the others below are for classification.

31Figure source -- https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-supervised-learning#notations

https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-supervised-learning

The major reason of using activation functions is to introduce non-linearity.

32Figure source -- the neural network playground using the Tanh activation function

https://playground.tensorflow.org/

For example, the identify activation function does not help in grouping non-linear data.

33Figure source -- the neural network playground using the identity activation function

https://playground.tensorflow.org/

34

How can we train the deep neural network?

Figure source -- https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks#running-nn

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks

We need to use optimization algorithms, such as gradient descent, to help us find a

local minimum (or global minimum for convex functions) on the cost function. We need

to set a learning rate, which means the pace of moving forward for each update.

35Figure source -- https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-supervised-learning#notations

𝐽 𝜃 =$
123

4

𝐿 𝑦(1), (𝑦(1)

𝜃783 ⟵ 𝜃7 − 𝛼 ⋅ ∇𝐽(𝜃7)

𝜃: 	model	parameters

𝛼: 	learning	rate

∇𝐽 𝜃 : 	gradient

𝑡: 	training	step

We want
to be here

https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-supervised-learning

Gradient is a generalization of derivative. The intuition is that computing the derivative

of 𝑓(𝑥) at point 𝑥Z means computing the slope of the tangent line to 𝑓(𝑥) at point 𝑥Z.

36

Exercise 5.1: Perform three gradient descent updates (i.e., compute 𝑥[, 𝑥\, and 𝑥]) for

one parameter 𝑥 with the cost function 𝑓 𝑥 = 𝑥\, using the starting point 𝑥^ = 9 and

learning rate 𝛼 = 0.1 (with the provided gradient function ∇𝑓(𝑥) below).

37Figure source -- https://vitalflux.com/gradient-descent-explained-simply-with-examples/

𝑓 𝑥 = 𝑥9

𝑥783 ⟵ 𝑥7 − 𝛼 ⋅ ∇𝑓(𝑥7)

𝑥: 	model	parameter

𝛼: 	learning	rate

∇𝑓 𝑥 : 	gradient

𝑡: 	training	step

∇𝑓 𝑥 = 2𝑥𝑥+

𝑥!

𝑥%
𝑥,

https://vitalflux.com/gradient-descent-explained-simply-with-examples/

38

https://www.3blue1brown.com/lessons/gradient-descent

We can reach a local minimum of the loss function by following the gradient (i.e., slope).

https://www.3blue1brown.com/lessons/gradient-descent

We need to adjust the learning rate strategically. A large learning rate could lead to

divergent behavior in the model. For example, the training loss could wiggle.

39Figure source -- https://www.jeremyjordan.me/nn-learning-rate/

https://www.jeremyjordan.me/nn-learning-rate/

40

https://www.3blue1brown.com/lessons/gradient-descent

Take smaller steps (i.e., smaller learning rate) when the slope is getting small.

https://www.3blue1brown.com/lessons/gradient-descent

How do we adjust the weight after computing the loss for each iteration? To update the

weights in previous layers, we need to use the backpropagation algorithm.

41Figure source -- https://www.3blue1brown.com/lessons/backpropagation

Compute the loss (error) for each iteration Backpropagate the errors

https://www.3blue1brown.com/lessons/backpropagation

Intuitively speaking, after comparing the prediction and the ground truth, we want to

increase the weight for the neuron we care about the most and decrease the others.

42Figure source -- https://www.3blue1brown.com/lessons/backpropagation

Compare the prediction and ground truth Update the weight for a neuron

https://www.3blue1brown.com/lessons/backpropagation

We apply the same idea to iteratively update all the weights for all the neurons in every

previous layer, starting from the last layer, and backpropagate the errors back.

43Figure source -- https://www.3blue1brown.com/lessons/backpropagation

Update the weights for the current layer Update the weights for the previous layer

https://www.3blue1brown.com/lessons/backpropagation

In practice, we use mini-batches (instead of all data) when running gradient descent to

increase the speed (and save computer memory) when updating neuron weights.

44Figure source -- https://www.3blue1brown.com/lessons/backpropagation

Use mini-batches to approximate the original gradientDivide data randomly into mini-batches

https://www.3blue1brown.com/lessons/backpropagation

The backpropagation algorithm applies the chain rule in calculus to compute gradient.

45Figure source and more about backpropagation -- https://www.jeremyjordan.me/neural-networks-training/

∇𝐽 𝜃3 =
𝜕𝐽 𝜃
𝜕𝜃3

=
𝜕𝐽 𝜃
𝜕𝑎(:)

⋅
𝜕𝑎 :

𝜕𝑧 : ⋅
𝜕𝑧 :

𝜕𝑎 9 ⋅
𝜕𝑎 9

𝜕𝑧 9 ⋅
𝜕𝑧 9

𝜕𝜃3
𝜕𝑔 𝑓 𝜃

𝜕𝜃
=
𝜕𝑔
𝜕𝑓

⋅
𝜕𝑓
𝜕𝜃

https://www.jeremyjordan.me/neural-networks-training/

46

Deep neural nets can overfit easily due to a

huge number of parameters. How can we

deal with overfitting?

We can combat overfitting by randomly dropping out neurons with a pre-defined

probability (i.e., the dropout technique), which forces the model to avoid paying too

much attention to a particular set of features.

47Figure source -- https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks#regularization

😪

😪

😪

😪
😪

😪

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks

We can also combat overfitting by using the regularization technique (also setting its

strength factor 𝜆), which regulates model weights to ensure that they are not too large.

48Figure source -- https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks#regularization

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks

We can also augment our data on the fly to combat overfitting (i.e., the so-called data

augmentation technique), such as randomly rotating, cropping, and changing colors.

49Cubuk, E. D., et al. (2019). AutoAugment: Learning augmentation strategies from data. In Proceedings of CVPR conference.

https://openaccess.thecvf.com/content_CVPR_2019/html/Cubuk_AutoAugment_Learning_Augmentation_Strategies_From_Data_CVPR_2019_paper.html

Deep learning models can suffer from vanishing gradient, where the gradient becomes

too small during backpropagation, and thus the model weights are hard to update. The

example below shows the problem when using the sigmoid activation function.

50More about problems in the gradient -- https://karpathy.medium.com/yes-you-should-understand-backprop-e2f06eab496b

https://karpathy.medium.com/yes-you-should-understand-backprop-e2f06eab496b

During model training, we need to tune hyperparameters, which means the parameters

that are set prior to the learning process (unlike model parameters, i.e., model weights).

51More info -- https://medium.com/pytorch/accelerate-your-hyperparameter-optimization-with-pytorchs-ecosystem-tools-bc17001b9a49

• Learning rate?

• Batch size?

• Layer size?

• Number of layers?

• Dropout rate?

• Strength of regularization?

• Activation function?

• Number of epoch?

• …

https://medium.com/pytorch/accelerate-your-hyperparameter-optimization-with-pytorchs-ecosystem-tools-bc17001b9a49

Common hyperparameter tunning strategies involve grid or random search. Random

search is typically considered more effective when there are a lot of hyperparameters.

52Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of machine learning research, 13(2).

https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf

• Deep learning is the idea of stacking many layers of artificial neurons.

• You can change the activation function and loss function to perform different tasks.

• The activation function can transform the weighted sum of the input non-linearly.

• The loss function measures the distance between the ground truth and the prediction.

• Gradient descent is used to help us find a local minimum on the error (cost) function.

• When performing gradient descent, we need to set a learning rate to determine the pace.

• We need to use the backpropagation algorithm to iteratively update the weights in previous layers.

• Using dropout, regularization, or data augmentation can help us combat overfitting.

53

Take-Away Messages

54

Questions?

