
Lecturer: Yen-Chia Hsu

Date: Mar 2025

Data Science
Lecture 9-2: Image Data Processing

(Convolutional Neural Network)

1

2

This lecture covers image processing basics

using Convolutional Neural Network.

3

Can we train models to learn convolution

kernels/filters and features automatically?

4

Deep learning allows us to train a model end-to-end, which means the inputs are raw

pixel values, and the outputs are categories or heatmaps.

Source -- http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

Traditional
Approach

Deep Learning
Approach

http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

On 1998, LetNet was developed to learn convolution kernels/filters to recognize digits

(i.e., the MNIST dataset). But due to insufficient computational power and lack of data

during that time, deep learning was not popular in Computer Vision.

5LeCun, Y., et al. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE.

https://ieeexplore.ieee.org/abstract/document/726791

On 2012, a breakthrough paper, AlexNet, showed that we can use multiple GPUs to

run deep Convolutional Neural Networks (CNN) with significantly better performance in

image classification (15.3% Top-5 error on ILSVRC2012 challenge, next best was 25.7%).

6Krizhevsky, A., et al. (2012). ImageNet classification with deep convolutional neural networks. NeurIPS.

GPU 1

GPU 2

https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

The convolutional parts of the architecture are used to learn kernels/filters to extract

features. The last layer(s) of most CNNs are just linear classifiers.

7Krizhevsky, A., et al. (2012). ImageNet classification with deep convolutional neural networks. NeurIPS.

Convolutional operations to extract features !Input Classifier

https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

8

The data should be linearly separable by the time it reaches the end of the network.

Source -- https://www.cs.cornell.edu/courses/cs5670/2022sp/lectures/lec21_cnns_for_web.pdf

Donahue, J., et al. (2014).
Decaf: A deep convolutional
activation feature for generic
visual recognition. ICML.

Linear
Classifier

https://www.cs.cornell.edu/courses/cs5670/2022sp/lectures/lec21_cnns_for_web.pdf
https://proceedings.mlr.press/v32/donahue14.html
https://proceedings.mlr.press/v32/donahue14.html
https://proceedings.mlr.press/v32/donahue14.html

9

Many learned CNN kernels from the first layer look similar to the hand-crafted kernels.

Krizhevsky, A., et al. (2012). ImageNet classification with deep convolutional neural networks. NeurIPS.

GPU 1

GPU 2

https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

Components of CNN typically involves convolutional layers, activation functions (e.g.,

ReLU), pooling layers (e.g., max pooling), fully connected layers, and normalization.

10Source -- http://cs231n.stanford.edu/slides/2022/lecture_6_jiajun.pdf

CONV POOL FC

NORMReLU

http://cs231n.stanford.edu/slides/2022/lecture_6_jiajun.pdf

There are many ways of combining these CNN components, below is an example.

11Krizhevsky, A., et al. (2012). ImageNet classification with deep convolutional neural networks. NeurIPS.

POOL1 POOL2 POOL3

NORM1 NORM2

CONV1 CONV2 CONV3 CONV4 CONV5 FC1 FC2 FC3
ReLU

Input

Output

https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

The fully connected layer flattens a feature map (image) to a 1-dimensional vector

which is then passed to an activation function and goes to the next layer.

12Source -- http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

𝑏
10-dimentional

bias vector

trainable

10 trainable parameters
(size of output)

trainable

10 x 3072 trainable parameters
(size of output * size of input)

http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

The convolutional layers in the CNN perform convolution operations as we discussed

previously (i.e., using a box filter to blur an image).

13Source -- http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

Each step in the convolutional operation produces one number, which is the sum of the

element-wise multiplication, or it can also be seen as a dot product of two tensors.

14Source -- http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

We then repeatedly slide the convolution kernel over the input feature map (or images).

The result is a new matrix of numbers.

15Source -- http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

…

http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

For each kernel, after convolution, we get a feature map (or activation map). The input

and output image sizes are different due to how we slide the convolutional kernel.

16Source -- http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

If we use another convolutional kernel (indicated in green color below) and slide the

kernel over the input image again, we obtain another feature (activation) map.

17Source -- http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

We can repeat this process many times, and we will get a bunch of feature (activation)

maps. The depth of the feature map depends on the number of filters/kernels.

18Source -- http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

Depending on the size of a mini-batch, we obtain multiple batches of feature maps.

Notice that we use a lot of data to train the bias vector and the kernels/filters.

19Source -- http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

trainable

trainable

6 trainable parameters
(number of filters)

6x3x5x5 trainable parameters
(number of filters * number of input
channels * filter width * filter height)

http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

In the previous slide, we have 456 trainable parameters using the convolutional layer.

Without convolution, using a fully connected layer gives more than 14M parameters.

20Source -- http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

6

28

28

Flatten Reshape

32 x 32 x 3 = 3072

28 x 28 x 6 = 4704

Fully
Connected

Layer

𝑊𝑥 + 𝑏
3072 x 4704 + 4074
trainable parameters

http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

So, convolutional layers can also be seen as a way to reduce the number of trainable

parameters (compared to fully connected layers) by only looking at a local region.

21Image source -- https://towardsdatascience.com/convolutional-layers-vs-fully-connected-layers-364f05ab460b

Fully Connected Layer Convolutional Layer

https://towardsdatascience.com/convolutional-layers-vs-fully-connected-layers-364f05ab460b

Convolution operations consider stride and padding. Stride means the number of steps

when moving the filter. Padding means adding zeros around the input feature map.

22Source -- http://cs231n.stanford.edu/slides/2022/lecture_6_jiajun.pdf

http://cs231n.stanford.edu/slides/2022/lecture_6_jiajun.pdf

Below is a typical example of no padding with stride 1 using kernel size 3. Notice that

the sizes of input (before convolution) and output (after convolution) are different.

23Source -- http://16385.courses.cs.cmu.edu/fall2022/lecture/cnn

Kernel

1 Step

8x8

6x6

http://16385.courses.cs.cmu.edu/fall2022/lecture/cnn

Below is another example of no padding with stride 2 using kernel size 3, which means

we slide the kernel 2 pixels (both horizontally and vertically) for each convolutional step.

24Source -- http://16385.courses.cs.cmu.edu/fall2022/lecture/cnn

1 Step

8x8

3x3

http://16385.courses.cs.cmu.edu/fall2022/lecture/cnn

We can also pad the input with zeros (i.e., adding zeros around the input). Below is an

example of padding 1 with stride 2 using kernel size 3.

25Source -- http://16385.courses.cs.cmu.edu/fall2022/lecture/cnn

1 Step

9x9

4x4

http://16385.courses.cs.cmu.edu/fall2022/lecture/cnn

Below is the formula to calculate the size of output 𝑤!"# after the convolution operation

(of input size 𝑤$%) with different padding 𝑝, kernel size 𝑘, and stride 𝑠.

26Source -- http://16385.courses.cs.cmu.edu/fall2022/lecture/cnn

𝑥 is the mathamatical floor
operation, which gives the
largest integer that is less than or
equal to 𝑥, for example, 5.2 = 5

http://16385.courses.cs.cmu.edu/fall2022/lecture/cnn

In practice, we usually pick a particular combination of padding and stride to keep the

input and output the same size (for convenience).

27Source -- http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

The max pooling layer is designed to have the neural network pay attention to the

most important information by taking the maximum value in a convolution window.

28Source -- http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

http://cs231n.stanford.edu/slides/2022/lecture_5_ruohan.pdf

The max pooling layer reduces the size of each feature (activation) map independently.

Notice that there are no learnable/trainable parameters in the max pooling layers.

29Source -- https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture8_convolutionalneuralnetworks_v4.pdf

https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture8_convolutionalneuralnetworks_v4.pdf

The activation function in the neural network is designed to introduces non-linearity,

such as the sigmoid activation function below.

30Source -- http://cs231n.stanford.edu/slides/2022/lecture_7_ruohan.pdf

Very small
gradients

http://cs231n.stanford.edu/slides/2022/lecture_7_ruohan.pdf

We can use the tanh function instead of the sigmoid function to mitigate some

problems, but the gradients still saturate (which can lead to vanishing gradients).

31Source -- http://cs231n.stanford.edu/slides/2022/lecture_7_ruohan.pdf

Very small
gradients

http://cs231n.stanford.edu/slides/2022/lecture_7_ruohan.pdf

Typically, the saturating gradient problem can be fixed by using the ReLU activation.

But the gradient when 𝑥 < 0 is zero, which lead to the dying ReLU problem.

32Source -- http://cs231n.stanford.edu/slides/2022/lecture_7_ruohan.pdf

𝑓 𝑥 = max(0, 𝑥)

http://cs231n.stanford.edu/slides/2022/lecture_7_ruohan.pdf

One way to mitigate the dying ReLU problem is to use a leaky ReLU instead, where the

negative value regions still have a slight slope. But in practice people still use ReLU.

33Source -- http://cs231n.stanford.edu/slides/2022/lecture_7_ruohan.pdf

http://cs231n.stanford.edu/slides/2022/lecture_7_ruohan.pdf

The normalization layer normalizes a certain region (e.g., the blue region below) of the

feature maps to zero mean and unit variance. A typical example is Batch Normalization.

Notice that there are trainable parameters in Batch Norm (see the paper for details).

34Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. ICML.

Channel

Height
and

Width

Batch

For numerical
stability

Mean of the
region

Variance of
the region

http://proceedings.mlr.press/v37/ioffe15.html

Batch Normalization is usually inserted after convolutional (or fully connected) layers

and before the activation function (the non-linearity), which has advantages below.

35Source -- https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture9_networkarchitectures_v3.pdf

Ioffe, S., & Szegedy, C. (2015,
June). Batch normalization:
Accelerating deep network
training by reducing internal
covariate shift. ICML.

https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture9_networkarchitectures_v3.pdf
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html

There are many ways for normalization. Each cube below shows a feature map tensor.

Pixels in blue are normalized by the same mean and variance that are computed from

the values of these blue pixels (𝐶 is channel, 𝑁 is batch, 𝐻 and 𝑊 are height and width).

36Wu, Y., & He, K. (2018). Group normalization. ECCV.

https://openaccess.thecvf.com/content_ECCV_2018/html/Yuxin_Wu_Group_Normalization_ECCV_2018_paper.html

But deep models are harder to train. In fact, deep models underfit the data. They

perform worse in training and testing than the shallow models.

37He, K., et al. (2016). Deep residual learning for image recognition. CVPR.

https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html

Intuitively, deep models should perform at least as good as shallow models by copying

layers from the shallower model and setting extra layers to identity (i.e., set 𝑓 𝑥 = 0).

38Source -- https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture9_networkarchitectures_v3.pdf

𝑥

𝑓(𝑥)

𝑓 𝑥 + 𝑥

Identity
shortcut

He, K., et al. (2016). Deep
residual learning for image
recognition. CVPR.

𝑥

𝑓 𝑥

Plain Block Residual Block

https://courses.cs.washington.edu/courses/cse576/20sp/calendar/lecture9_networkarchitectures_v3.pdf
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html

By stacking many residual blocks, we can build the residual network architecture (i.e.,

ResNet), which is a reasonable baseline for image classification.

39He, K., et al. (2016). Deep residual learning for image recognition. CVPR.

https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html

We often use pre-trained weights in similar or other tasks as a starting point (but not

from scratch). This idea is called Transfer Learning, where we reuse prior knowledge.

40Source -- http://cs231n.stanford.edu/slides/2022/lecture_6_jiajun.pdf

http://cs231n.stanford.edu/slides/2022/lecture_6_jiajun.pdf

What if we need to train the model from scratch? One (bad) idea is to initialize the

weights with a constant (or zero). But this will cause layers to have the same gradient (or

no gradient when weights are zero) during training.

41Source -- https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial4/Optimization_and_Initialization.html

https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial4/Optimization_and_Initialization.html

Another idea is to initialize the model weights by randomly sampling from a Gaussian

or uniform distribution with a constant variance. But this can cause the activation values

to vanish or explode in the deeper layers (which means vanishing/exploding gradients).

42Source -- https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial4/Optimization_and_Initialization.html

Vanishing values

Exploding values

Smaller
variance

Larger
variance

https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial4/Optimization_and_Initialization.html

A better idea is to scale the variance of the random initialization (Gaussian or uniform

distributions) for each layer, which leads to the Xavier (for Tanh activation) and Kaiming

(for ReLU activation) initialization. The example below uses the Kaiming method.

43Source -- https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial4/Optimization_and_Initialization.html

https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial4/Optimization_and_Initialization.html

We can use the Class Activation Mapping (CAM) method to visualize the areas in an

image that contribute most significantly to the model decisions.

44Zhou et al. (2016). Learning Deep Features for Discriminative Localization. CVPR.

Global Average Pooling

https://arxiv.org/abs/1512.04150

45Selvaraju et al. (2017). Grad-CAM: Visual Explanations From Deep Networks via Gradient-Based Localization. ICCV.

CAM only works for CNNs with a global average pooling layer. For generalization,

Grad-CAM computes weights by averaging the gradients of the target class score with

respect to the feature maps.
Backpropagate gradientsFeature

maps

𝑅𝑒𝐿𝑈()

Only want
positive
influences

https://arxiv.org/abs/1610.02391

46

What about processing videos, which are

series of images over time?

There are many ways for video classification (as shown below), where 𝐾 means the total

number of video frames, 𝑁 means a subset of neighboring video frames.

47Carreira, J., & Zisserman, A. (2017). Quo vadis, action recognition? a new model and the kinetics dataset. CVPR.

https://openaccess.thecvf.com/content_cvpr_2017/html/Carreira_Quo_Vadis_Action_CVPR_2017_paper.html

Instead of using 2D convolutional kernels, we can use 3D kernels to learn information

from videos. Videos can be represented as a 4D tensor (channel*time*height*width).

48Source -- http://cs231n.stanford.edu/slides/2022/lecture_12_ruohan.pdf

Karpathy, A., et al. (2014).
Large-scale video classification
with convolutional neural
networks. CVPR.

http://cs231n.stanford.edu/slides/2022/lecture_12_ruohan.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html

We can also combine CNN and RNN for video classification.

49Source -- http://cs231n.stanford.edu/slides/2022/lecture_12_ruohan.pdf

Ballas, N., et al. (2016). Delving
deeper into convolutional
networks for learning video
representations. ICLR.

Each feature map 𝐼
depends on two inputs:

• 𝐼!: Same layer,
previous timestep

• 𝐼": Previous layer,
same time step

Share model weights (parameters) across time
steps, but use different weights at each layer

Entire network uses 2D
feature maps
(channel*height*width)

𝐼$

𝐼% 𝐼

http://cs231n.stanford.edu/slides/2022/lecture_12_ruohan.pdf
https://arxiv.org/abs/1511.06432
https://arxiv.org/abs/1511.06432
https://arxiv.org/abs/1511.06432
https://arxiv.org/abs/1511.06432

We can separately consider appearance and motion. The two-stream network below

uses CNN on individual video frames for the original image and optical flow.

50Simonyan, K., & Zisserman, A. (2014). Two-stream convolutional networks for action recognition in videos. NeurIPS.

https://proceedings.neurips.cc/paper/2014/hash/00ec53c4682d36f5c4359f4ae7bd7ba1-Abstract.html

Optical flow is a computer vision technique that calculates and highlights local motions

(of objects, surfaces, edges, etc.) in consecutive video frames.

51Simonyan, K., & Zisserman, A. (2014). Two-stream convolutional networks for action recognition in videos. NeurIPS.

https://proceedings.neurips.cc/paper/2014/hash/00ec53c4682d36f5c4359f4ae7bd7ba1-Abstract.html

• We can use deep learning to train models end-to-end from raw data to the desired output.

• Convolutional Neural Networks can learn image filters/kernels from a lot of data.

• Kernel size, stride, and padding will determine the final output size in convolution operations.

• The pooling layer has no trainable parameters and reduces the size of feature maps independently.

• ReLU is easy to compute, introduces non-linearity, and can mitigate the vanishing gradient problem.

• The normalization layers (e.g., Batch Norm) can make the network easier to train.

• Residual blocks allow very deep networks to learn identity functions that emulate shallow networks.

• For video classification, we can combine CNN with RNN, or we can use 3D convolutional layers.

52

Take-Away Messages

53

Questions?

