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e AV-Deepfake1M is a large-scale content-driven deepfake dataset generated using a large language model.
e Best Student Paper Award at ACM Multimedia 2024 in Melbourne.

Zhixi Cai, Shreya Ghosh, Aman Pankaj Adatia, Munawar Hayat, Abhinav Dhall, Tom Gedeon, and Kalin
Stefanov. 2024. AV-DeepfakelM: A Large-Scale LLM-Driven Audio-Visual Deepfake Dataset. In Proceedings
of the 32nd ACM International Conference on Multimedia (MM '24). Association for Computing Machinery,
New York, NY, USA, 7414-7423. https://doi.org/10.1145/3664647.3680795
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Preprocessing: Audio extraction via FFmpeg followed by Whisper-based transcript generation.

Step 1 (transcript manipulation): The transcript is modified through word-level insertions, deletions & replacements.
Step 2 (audio generation): The audio is generated in both speaker-dependent and independent fashion.

Step 3 (video generation): Based on the generated audio, the subject-dependant video is generated with smooth
transitions in terms of lip-synchronization, pose, and other relevant attributes.



Takeaway from Andrei Bursuc's MMM'25 Keynote
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e Careful and smart data selection and annotation can go a long way

e Molmo is a very competitive VLM from Ai2, trained on 700k image/caption pairs

e 3 annotations per image; annotation speech is recorded for 60-90 seconds; formatted questions
Deitke, M., Clark, C., Lee, S., Tripathi, R., Yang, Y., Park, J. S., ... & Kembhavi, A. (2024).

Molmo and pixmo: Open weights and open data for state-of-the-art multimodal models. arXiv
preprint arXiv:2409.17146. (https://molmo.allenai.org/ )
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Domain Adaptive Semantic Segmentation Using Weak Labels, ECCV 2020, https://arxiv.org/abs/2007.15176
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Detecting disparities in police deployments using dashcam data
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Problem Statement

e Policing data is vital for detecting inequity in police behavior

e Aggregated police deployment data is unavailable



Problem Statement

Downstream policing data has only been previously studied

Studies are qualitative

Existing quantitative studies use datasets provided by the police themselves
Predictive policing data depends on downstream data

If police deployment is biased, this could affect downstream data and incur model bias



Method

Dataset by Nexar

24,803,854 images taken throughout the five boroughs of New York City between March 4
2020 and November 15 2020. Each image is 1280 x 720 pixels.

Label 15000 images for police vehicles (Sedans, SUVs, Compacts, and Trucks)

Train with YOLO

10



(a) True Positives (b) False Positives
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Images Classified Negative
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Police deployment
(relative to city average)

0x  0.25x  0.5x 0.75x1x 2x 3x

Figure 6: Map of police deployment throughout NYC, ex-
pressed relative to the city average. Grey areas are those with
zero population in Census data, including airports, cemeter-
ies, and parks.
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(a) Deployments by race group.
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(b) Deployments by income quartile.




Yahia Dalbah

Kalman Filter, Sensor Fusion, and Constrained
Regression: Equivalences and Insights
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Proceedings of the 33rd International Conference on Neural Information Processing Systems.
2019



Short intro (1) Kalman Filters (KF)

Time-invariant linear dynamical systems (t=1,2, 3 ...)

Actual States (process model, assumed) Iy = F.CIIt_l “+ 5t,

Measured values (measurement model) Z¢ = HIIL‘t =+ Ei,

Actual state values (i.e. ground truth) is
Kalman filters (KF): unobservable

Tiyl = F:Z’t, Intermediate estimate (predict step), use model and previous estimate

Tii1 = Tpy1 + Kt+1(2t+1 - Hg‘;t_*_l), Intermediate estimate

Remark:
If the process noises are gaussian, then KF is a discretized
bayes estimator



Short intro (2) Sensor Fusion and Extended Kalman Filter

General case of KF (KF is SF when the system is already linear)
Aim is to linearize non-linear systems

Assume: T — ff'
non-linear process model and maps t+1 f( t)’

H;+1 = Dh(Zs+1) Fyyq= Df ()

Jacobian (df/dx, dh/dx) at (t-1)

Yields extended sensor fusion (ESF)/extended kalman filter (EKF)



Paper contribution

Edit the formulation of the problem such that the actual process value are
observed with a time lag.

Example problem: Influenza (flu) nowcasting
Goal: Estimate the weekly percentage of weighted influenza-like
illness (wILI)

Sensors (proxies) - United States:

Google Flu Trends and Google Health Trends
Google Trends (search terms)

Health Tweets

Electronic Health Records

Target: Reduce the collection of many inaccurate and
noisy sensors to a converging robust prediction

Webpage visits:
Wikipedia
Centers for Disease Control and Prevention



Problem formulation

Replace noise covariance ‘R ‘ by empirical covariance from past flu Rt+1 — 1 Z(zz _ HfBz)(Zz _ H:Bi)T,
data L “
Reduce the EKF estimate equation to a regression of states, where o=
H would be reduced to regression coefficients
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Instead of dumping the whole data as multi-input => output
forecasting problem, transform it into multi-input => multi-weak
regressions => output



Setup and results

At week t+1, estimate x* ,, from a collection of ‘sensors (308 measurement proxies)
Each proxy is a (weak) regression trained on t-155 weeks
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