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Large Language Models

Large Language Models (LLMs) are dominating Open source:
current research in natural language processing and Llama
extending to more other modalities (images, video,
speech). Mistral 1 R
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limit Claude.
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Token-Free LLMSs

LLMs, despite different model architecture and Imagine a researcher giving a fifteen-minute talk.
performance, are mostly based on Transformer
decoder-only architecture, pre-trained on next token
prediction task.

In such a situation, researchers do not usually
prepare detailed speeches by writing out every
single word they will pronounce. Instead, they
However, all current LLMs miss a crucial outline a flow of higher-level ideas they want to
characteristic of human intelligence: explicit communicate.

reasoning and planning at multiple levels of
abstraction. The human brain does not operate at
the word level only.

Should they give the same talk multiple times, the
actual words being spoken may differ, the talk could
even be given in different languages, but the flow of
higher-level abstract ideas will remain the same.



Large Concept Models
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Figure1 - Left: visualization of reasoning in an embedding space of concepts (task of summarization).
Right: fundamental architecture of an LARGE CONCEPT MODEL (LCM).
*: concept encoder and decoder are frozen.

The input is first segmented into
sentences, and each one is
encoded to achieve a sequence of
concepts, i.e., sentence
embeddings.

This sequence of concepts is then
processed by the LCM to generate
at the output a new sequence of
concepts.

Finally, the generated concepts are
decoded into a sequence of
subwords. The encoder and
decoder are fixed and are not
trained.



Large Concept Models

Core: concept-based understanding.

Hypothesis: Humans processing and generate language
not based on single word (word-level), but rather higher
level unit (phrases, sentences, even paragraph) and
reason based on these.

Approach: (hierarchical) reasoning in an abstract
embedding space, such as subword tokens, concepts,
short description of a paragraph, and small section.

Concept: an abstract atomic idea. In practice, a concept
would often correspond to a sentence in a text
document, or an equivalent speech utterance.




Results: TL;DR

Better multilingual and multi-modal task
performance: Multilingual translation,
Cross-modality generation (text-to-speech,
speech-to-text)

Cross-lingual knowledge: Multilingual Knowledge
QA, Information retrieval in Low-resource languages

Why: model concept in a unified abstract semantic
space, not depend on token distribution of a certain
language.

Long document generate and processing: Technical
Writing, Long Document Summarization, Complex
Story Generation.

Creativity in Generation: Creative Writing,
Conversational Al.

Why: Better inference in concept space, more like
human.



Take Away

1. Concept is closer to the actual semantics compared to word or token, this reduce
irrelevant signal from lower dimention, and focus on higher level semantics.

2. Modularity and extensibility: concept encoders and decoders can be independently
developed and optimized without any competition or interference.

3. A concept can be translate to multiple languages or speech signal modality, no
re-training or inference is needed.

Text Speech Image Video

Model | Input Output Input Output Input Output Input Output
GEMINI | 47 47 62 v v v v X
GPT 85 85 v v v v ? X
CLAUDE | 37 37 v v v v X X
BLooM | 46 46 X X v v X X
LrAMA 3-400B 8 8 34 X v v X X
LCM-SONAR | 200 200 76 1 X X (ASL) X

Table 1 - Comparison of language and modality coverage for several LLMS and our LCM operating on the
SONAR embedding space. SONAR has an experimental support for American Sign Language (ASL) which
is not used in this paper.
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How to quantify memorization in CLIP?

The paper takes two models, f and g, where f is trained on the
whole set S of image-text pairs, and g on S’ defined as S minus a
single image-text pair.

The paper defines a alignment score based on how close the
image and text representations for a single datapoint and how
distant they are from other unseen images or pieces of text.

Finally, they define a score named CLIPMem for an image-text pair
based on the difference in alignment between the two models.
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Figure 1: Examples of data with different levels of memorization. Higher memorization scores
indicate stronger memorization. We observe that atypical or distorted images, as well as those with
incorrect or imprecise captions, experience higher memorization compared to standard samples and
easy-to-label images with accurate captions. Results are obtained on OpenCLIP (Ilharco et al., 2021),
with encoders based on the ViT-Base architecture trained on the COCO dataset.




In their experiments, they find that the memorization mostly happens within the text
encoder, so they come up with some strategies for mitigation
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Figure 5: Mitigating memorization in CLIP improves downstream generalization. We train
CLIP models with different "augmentations" in the textual domain. (a) We use multiple captions
for the same image during training. (b) We directly noise the text embeddings during the training
using Gaussian noise with a mean of 0 and different standard deviations (adding the Gaussian noise
N (0,0.15) gives us the sweet spot with the smallest memorization and highest performance). Both
strategies successfully reduce memorization while improving performance.



Main takeaways

e We can define a score for memorization for multimodal
models

e “CLIP highly memorizes data points with incorrect and
imprecise captions, much like supervised models memorize
mislabeled samples, but it also memorizes atypical
examples”

e Memorization mostly happens in the text encoder - mitigating
strategies can both reduce memorization and improve
downstream accuracy
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ABSTRACT ARTICLE HISTORY
Healthcare educators (HPE) are challenged by rapid developments in Generative Artificial Received 22 September 2024
Intelligence (GenAl) tools. They need a standardized model to evaluate these new tools and to Accepted 16 October 2024
guide them in pedagogically-sound integration in the curriculum. PICRAT is an educational model
designed specifically to help teachers meet this challenge. NotebookLM is a new muilti-featured KEYWORDS
GenAl tool to help teachers and learners in education and research. Its newest feature allows auto- PICRAT; Gaogle X

D = i , 2 g NotebookLM; podcasts;
matic generation of an engaging podcast (called audio overview) from uploaded education or ChatGPT; Generative Al
research content. Using the example of NotebookLM and, specifically, the auto-podcast feature, we
illustrate how HPE can use the PICRAT model to evaluate GenAl tools for technology integration.
We discuss how this model can be utilized as a standardized approach for evaluation and imple-
mentation of GenAl tools in health professions education.



L R[N R [T 518 for Technology Integration in Teacher Preparation

Models engagement with tech and how tech alters teaching

PIC (Learner's Role):

Passive — Students consume content (e.g., listening to an Al-generated podcast).
Interactive — Students engage with content (e.g., discussing an Al-generated summary).
Creative — Students generate content (e.g., making their own Al-generated podcasts).

RAT (Teaching Change):

Replacement — Al replaces traditional tasks without teaching enhancement.
Amplification — Al enhances traditional teaching by increasing efficiency.
Transformation — Al fundamentally changes the learning process.



Passive & Transformative (PT) — An educator generates a podcast and
assigns it as pre-class material.

Interactive & Transformative (IT) — Students take notes on the podcast and
engage in a think-pair-share activity.

Share Notebook with students (CT) — Teacher creates a NotebookLM and
generates an audio overview and asks students to review the material and
engage in a chat with the notebook to delve deep into the study materials
and identify a question that they have that is not answered by the content.

The PICRAT Model for Technology
Integration in Teacher Preparation

Royce Kimmons, Charles R. Graham, & Richard E. West
Brigham Young University
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Figure 6. An example of unit activities mapped to PICRAT.
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Intro

- The diffusion reconstruction on real images can preserve the image content while leaving
the fingerprint of the diffusion model on the output images.

- These reconstructed images can serve as informative yet hard samples for detectors to
learn the subtle differences between real and generated images.

- This paper proposes a novel training framework named Diffusion Reconstruction
Contrastive Training (DRCT).

- DRCT significantly improves the detection accuracy and generalization ability of
diffusion-generated image detectors.



Diffusion Reconstruction Contrastive Training (DRCT)
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DRCT consists of a reconstruction stage
and a training stage:

Reconstruction stage: a large
number of images are produced by
reconstructing both real and
generated image using selected
diffusion models, which are then
prepared for the training of the
classifier.

Training stage: 4 types of samples:
real images, real reconstructed
images, fake images, and fake
reconstructed images, are used for
computing the contrastive loss and
the classification loss.



DRCT-2M Dataset

- Collection of 2 million images for training and evaluation. It consists of two parts:
- Images automatically generated by diffusion-based models (prompts are derived from the MSCOCO)
- Images collected from real-world scenarios (Midjourney and CIVITAI)

The DRCT-2M dataset involves 16 types of stable diffusion models, including LDM, SDv1.4, SDv1.5, SDv2,
SDXL, SDXL-refiner, SD-Turbo, SDXL-Turbo, LCM-SDv1.5, LCM-SDXL, SDv1-Ctrl, SDv2-Ctrl, SDXL-Ctrl,
SDv1-DR, SDv2-DR and SDXL-DR.

The prompt used for image generation is “A big burly grizzly bear is shown with grass in the background.
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LCM-SDvl.5 LCM-SDXL SDvl1-Ctrl

SDv2-Ctrl  SDXL-Ctrl  SDv1-DR SDv2-DR  SDXL-DR



Some experimental details

Data: The compared methods are trained on the DRCT-2M dataset
(utilizing real images from MSCOCO) and the Genlmage.

Evaluation metric: Accuracy (ACC) as the metric to evaluate
detection performance, using a threshold of 0.5.
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Table 1. Accuracy (ACC, %) comparisons of our DRCT and other generated image detectors on DRCT-2M. Except for DIRE and DRCT,
all methods are only trained on SDv1.4 and then evaluated on different testing subsets on DRCT-2M. For the training data of DIRE and
DRCT, when the Diffusion Reconstructed (DR) model is SDv1, the original fake images were generated by SDv1.4. When the DR model

is SDv2, the original fake images were generated by SDv2.

SD Variants Turbo Variants LCM Variants ControlNet Variants DR Variants
Method DR Avg.
SDXL- SD- SDXL- LCM- LCM- SDvl- SDv2- SDXL- SDvl- SDv2- SDXL-
LDM  SDvl4 SDvl.5 SDv2 SDXL poGrer Tubo Turbo SDvL.5S SDXL Cul  Cwl Col DR DR DR
CNNSpot - 9987 9991 9990 9755 6625 86.55 86.15 7242 9826 6172 9796 8589 8284 6093 5141 5028 S8LI2
F3Net - 9985 9978 9979 88.66 5585 87.37 6829 6366 9739 5498 9798 7239 81.99 6542 5039 5027 7713
CLIP/RN50 - 9900 99.99 9996 9461 6208 9143 8357 6440 9897 5743 9974 80.69 8203 6583 50.67 5047 80.05
GramNet - 9940 9901 9884 9530 6263 80.68 7119 6932 9305 5702 8997 7555 8268 5123 5001 50.08 76.62
De-fake - 921 9953 9951 89.65 64.02 6924 9200 9393 99.13 70.89 5898 6234 6666 5012 50.16 5000 7552
Conv-B - 9997 1000 99.97 9584 6444 8200 80.82 6075 9927 6233 99.80 8340 7328 6165 5179 5041 79.11
UnivFD - 9830 9622 9633 9383 9101 9391 8638 8592 9044 8899 9041 81.06 89.06 5196 51.03 5046 8346
DIRE SDvl 98.19 9994 9996 68.16 5384 7193 5887 5435 9978 5973 99.65 6420 59.13 5199 5004 4997 7123
DIRE SDv2 5462 7589 7604 9987 5990 9308 99.77 5755 8729 7253 67.85 99.69 6440 4996 5248 4992 7255
DRCT/Conv-B (ours) SDvl 9991 9990 9990 9632 83.87 8563 9188 7004 99.66 7876 99.90 9501 8121 9990 9540 7539 90.79
DRCT/Conv-B (ours) SDv2 99.66 98.56  98.48 99.85 96.10 98.68 99.59 8330 9845 9378 9668 99.85 97.66 9391 99.87 9039 96.55
DRCT/UnivFD (ours) SDvl 9674 9626 9633 9489 9624 9346 9343 9294  91.17 9501 9560 9268 9195 9410 6955 57.43 90.49
DRCT/UnivFD (ours) SDv2 9445 9435 9424 9505 9561 9538 9481 9448 9166 9554 9386 9348 9354 8434 8320 67.61 9135




Takeaways

- The paper proposes a universal framework - Diffusion Reconstruction Contrastive
Training (DRCT), for enhancing the generalizability of existing methods for detecting
diffusion-based generated images.

- While DRCT also boosts the detection accuracy for GAN-generated images, the
improvement is not as significant.

- This difference is mainly due to the unique generative artifacts produced by GANs
versus those produced by diffusion-based methods - opportunity for future work :)



