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Preference Optimization (PO)

Reinforcement Learning from Human Feedback (RLHF):

e Annotators rank model responses, e.g., forinput x: y, <y_
o  Resulting in a dataset: D = {(x,y_, y))}
e Supervised train a reward model on dataset:

e RL train model: Slow & Uns’tab\ﬁa(:) Ee y yu~p[—10g(0(re (2, yuw) — 79 (2, 11)))]-
e Ban, que 1o samphing 8N4 i mer(yl2)),

Direct Preference Optimization:

To(Yw | T iy T
e DPO: Tends to overfit Loro (705 Tret) = —E(z,y,, ,y1)~D [log" (ﬁlog M — Blog M)] .

7Trcf(yw | 'T) 7rref(yl | .’I')
e Identity Preference Optimization (IPO): Adds regularisation term

e Kahneman-Tversky Optimization (KTO): does not need ranking, just binary of whether outcome is
desired/undesired



Aligning Visual Contrastive Learning Models

PO mainly applied to generative models, this work focuses on contrastive visual (e.g., CLIP) for:

e Mitigating typographic attacks
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Preference-based Contrastive Optimization
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Algorithm 1 Preference-based contrastive optimization

Require: dataset D = (Dprer, Dreg ), Model 7o, Reference model s, Regularization coef. Arg
1: for each batch b € D do
2¢ pret, breg — b > Get batch of preference / regularization data
3 Compute 7y (y|z) £ Softmax(fe (y,x)) for ¥ € {0,ref} > Compute model and ref. distributions
4 lpret <— Lpo (70, Tret; Dprer) > Compute preference loss using one of Egs. &, @), or
3 lreg < Lreg (M0, Trer; bres) & Compute regularization loss as in Eq. {(I1), zero if by, = {}
6: lio lprcf + An:g 5 lrcg > Total loss
75 Update model ¢ by minimizing o
8: end for




Results - Typographic Robustness
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Figure 2: Comparisons of optical character recognition (OCR) and object detection (OD).



Results - Disentangling Gender Understanding
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Figure 4: Images retrieved for the caption “an image of a police” with three different policies
from top to bottom: reversed understanding of gender (6W, 4M), pretrained CLIP model (2W, 8M),
neutralized understanding of gender (SW, 5M), i.e., t = t*.




Takeaways

e PO can be used on non-generative models
e Align without losing abilities (i.e., catastrophic forgetting)

e KTO performs best
o  easier to collect data for also!
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Motivation

Large Reasoning Models (LRMs) show strong benchmark performance, but evaluations suffer
from contamination and focus on final answers rather than reasoning paths.

The question is: can we find a way to show LRMs really doing reasoning?

Models to be tested: LRMs including Claude-3.7 Sonnet-Thinking, DeepSeek-R1, OpenAl
o3-mini, and standard LLMs under identical compute budgets

Methods: use procedurally generated puzzles (Tower of Hanoi, River Crossing, Blocks World)
with adjustable compositional complexity—ensuring zero overlap with training data—and
analyze both final answers and intermediate reasoning traces



Puzzles
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Figure 3: Illustration of the four puzzle environments. Columns show the progression from initial
state (top) through intermediate state (middle) to target state (bottom) for puzzles: Tower
of Hanoi (disk transfer across pegs), Checkers Jumping (position swapping of colored tokens), River
Crossing (transporting entities across a river), and Blocks World (stack reconfiguration).



tructure

LLM Response Peg0 Peg1 Peg2
<think>
Move disk 1 from peg © to peg 2 ... Initial State
moves = [
[, o, 2, N
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[1, 2, 11, (for analysis) 1, 2, 1]
[3, 0, 2], [3, 0, 2]
[1, 1, o],
[2, 1, 2], Middle State
1RO 215
1 : ' [1, 1, 0]
Let me double-check this... [2, 1, 2]
</think> 1 ©5 2
extract final answer
<answer> the final answer is moves=... (for measuring accuracy)
</answexr> » Target State

100 Claude 3.7 e g
laude § ) E
1 il )
%0 ) (+thinking) £ Claude 3.7 208
< 1 £ 15000 (+thinking){ S
< 6 1 = B Correct Solutions
5 60 \ 5 g0
2 1 £ 10,000 |
2 \ 3 = ¢
g O 2 ~ Claude 3.7 i“ ¢\ Incorrect Solutions
< Claude 37°"~0 2 500 " o 2 g4 \ g
20 2 d £ s 968\ J
3 K]
0 1 b 0000 A o ] b
12345678 10 15 20 12345678 10 15 20 12345678910 15
Complexity (number of disks) Complexity (number of disks) Complexity (number of disks)

Figure 1: Top: Our setup enables verification of both final answers and intermediate reasoning traces,
allowing detailed analysis of model thinking behavior. Bottom left & middle: At low complexity,
non-thinking models are more accurate and token-efficient. As complexity increases, reasoning models
outperform but require more tokens—until both collapse beyond a critical threshold, with shorter
traces. Bottom right: For correctly solved cases, Claude 3.7 Thinking tends to find answers early
at low complexity and later at higher complexity. In failed cases, it often fixates on an early wrong
answer, wasting the remaining token budget. Both cases reveal inefficiencies in the reasoning process.



Findings 1: Complexity Cliff

Performance drops sharply to near-zero at certain puzzle sizes—no gradual degradation—across all tested LRMs

1. Low complexity: Standard LLMs often
outperform LRMs—LRMs may overthink.

2.  Medium complexity: LRMs excel using their
chain-of-thought.

3. High complexity: Both fail
catastrophically—their “thinking” offers no
rescue

Tower of Hanoi Checker Jumping Blocks World River Crossing
100f 100 g————— 100 100 ———
{ ! Claude 3.7 Sonnet
R (+thinking) % 80 o
g | i g |1 g g
< 60 : < 60 :\Claude 3.7 Sonnet < 60} {Claude 3.7 Sonnet < 60 Claude 3.7 Sonnet
g ‘ H g i (+thinking) g (+thinking) g (+thinking)
5 40t ': 5 40 ¢ 3 40 40
g bo. 3 : g 8
< e < 200 < : <
2l laude 3.7 Sorsll (el 47 S 201 Claude\y.7 Sonnet 20/cClaude 3.7 Sonnet
12345678 10 15 20 12345678 10 15 20 2 10 20 30 40 50 2345678 10 15 20
Complexity (number of disks) Complexity (number of checkers) Complexity (number of blocks) Complexity (number of people)
100 100f 100 100
. 80 DeepSeek-R1 i 8o 80 80
g g g g
5 o 1% 07 DecpseekcRi % 07 {DeepSeekR1 % 601 IDecpSeek-R1
g ] ] g 8
g0 ! 1 5 40 g 10 5 40
‘g > < 20iped “ <
DeepSeekV3 [PegpSeeky Dieps Deeg eekV3
ob, ... o ¢ 2 0} Oboo—00 8 0 00+ GOy 0 4 of . oo 0 0 "
12345678 10 15 20 12345678 10 15 20 2 10 20 30 40 50 2345678 10 15 20

Complexity (number of disks) Complexity (number of checkers) Complexity (number of blocks) Complexity (number of people)

Figure 4: Accuracy of thinking models (Claude 3.7 Sonnet with thinking, DeepSeek-R1) versus their
non-thinking counterparts (Claude 3.7 Sonnet, DeepSeek-V3) across all puzzle environments and
varying levels of problem complexity.



Findings 2: Failures

Inference Paradox: As complexity increases
beyond a threshold, LRMs reduce token
usage—they give up early despite remaining
capacity—indicating a compute-scaling ceiling.

Execution Failure: Even if given the correct
algorithm (e.g., Tower of Hanoi solution), LRMs
don’t improve—they still fail at the same complexity
level.

Inconsistent Reasoning: A model might solve a
100-move problem but then fail a simpler 5-move
variant, showing reasoning is brittle, not rule-based
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Figure 5: Pass@k performance of thinking vs. non-thinking models across equivalent compute
budgets in puzzle environments of low , medium , and high complexity. Non-thinking models excel
in simple problems, thinking models show advantages at medium complexity, while both approaches
fail at high complexity regardless of compute allocation.



Take-aways

“Illusion” vs. genuine reasoning: LRMs exhibit many outward signs of reasoning, but under controlled tests they

.....

.....

Architectural limits: Size and chain-of-thought alone don't guarantee scalable reasoning—execution and
generalization remain bottlenecks.

Toward better evaluation: Encourages flow-track analysis (reasoning traces) and procedurally validated
benchmarks, not just outcome-based metrics.

Future direction: True reasoning may require new architectures—symbolic modules, grounding, memory systems,
or synthesis of code—beyond next-token prediction.

Thinking: Do you think puzzles like Tower of Hanoi reflect general reasoning?

- “Tower of Hanoi... model decides that there’'s too many steps... so it spins around trying to find a shortcut
and fails.”
- “Breaking down after a few hundred reasoning steps doesn't mean you'’re not ‘really’ reasoning.”
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Too many tokens

For a 5 minute video at 224 x 224 pixels consists of the typical 16 x 16 spatial
patches, when sampling 1 frame per second, the transformer sequence length is
58,800 tokens.

Two main strategies to counter this: dropout and merging.

Input Video Token Merging Layer 4

e £ I |
g | . ! 1
8 £ m

Figure 1. Video Token Merging reduces computation of video transformer models by successively merging tokens without re-
training or additional learned parameters. We show how an input video has its tokens merged across different layers.



Merging for Spatio-Temporal models

Spatio-Temporal Merging Process
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Figure 2. The merging process first separates tokens into two sets. Similarities are calculated and a one-to-many bipartite matching
between tokens in each set is found. Finally, the top r edges are kept and these are merged based on the similarity between tokens.



Results on Kinetics (coarse video classification

Top 1 Accuracy Accuracy vs. Speedup
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Figure 3. (Left) curves corresponds to accuracy with ViViT and VideoMAE on K400 when increasing r (the number of tokens
merged) up to its limit. The z-axis is the percentage (relative to the original total) of tokens dropped per layer. (Right) figure
displays the accuracy against speedup gained for these r values.



Less gains on fine-grained data

Model r Reduction K400 SSv2 — Elé';rgo <o FPS Spf;‘;“p
0 - 76.63 50.66 31.32 5548 4723 117.78 1.00
randomdrop  65.58 17.18 1278 34.03 2831 240.13  2.04
TimeSformer [2] 1o o drop 68.30 2297 16.09 3824 33.02 240.13  2.04
random merge 3841 5.46 282 2147 857 23458 199
o , merge 71.14 25.11 18.59 4047 3573 240.16  2.04
Divided space-time models 0 . 7050 61.39 35.02 61.09 46.72 99.79 1.00
random drop  63.80 24.50 1427 37.38 27.57 21840  2.19
Motionformer [26] ¢ . o drop 6341 2246 1592 39.54 30.60 21673  2.17
random merge 49.30 17.76 7.88 31.56 1677 21030  2.11
merge 65.05 24.10 15.60 3820 30.15 218.11  2.19
0 - 62.09 6458 35.70 6149 4689 186.72  1.00
random drop  55.02 5729 2853 5545 3945 48145 258
VideoMAE [30] 156 drop 56.65 6033 31.02 57.70 4243 483.04  2.59
random merge 20.64 22.89 544 26.86 10.07 471.74 2:53
. merge 56.10 61.10 3127 58.00 4239 47628  2.55
Spatio-temporal models 0 - 63.43 50.63 35.82 5819 51.59 106.00 1.00
randomdrop  59.95 4671 3036 54.24 4551 262.04 247
ViViT [1] 300 drop 58.00 4536 30.12 5320 4690 26234 247
random merge 28.88 19.15 5.78 28.88 14.82 259.92 245
merge 63.08 50.15 3511 5724 5133 26072 246

Table 1. Performance of token merging with a constant schedule when compared to alternative methods of reducing token sequence
length. Bold indicates the reduction methods that achieve highest accuracy on a given dataset. Grey rows correspond to the upper
bound accuracy of the original model.



Qualitative results on fine-grained data

(b) Merged clip.

Figure 5. Visualisation of the final merged tokens for an SSv2 clip of “covering salt shaker with a towel”, produced with VideoMAE.
Tokens 1 and 2 capture the white salt shaker. The model struggles more with the blue towel, with it splitting into tokens 3 — 8.



Takeaways

- Token merging can be an effective way to increase inference speed and works
better than dropout

- Token merging is more damaging for fine-grained and temporal data (EK100
and SSv2)

- Might be useful for large scale processing and when you don't need super fine
grained information?
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Audio transcription

Run settings

Model Comparison: Meaning vs. Spelling /

=t

Gemini 2.5 Pro Preview -

Token count 1,818/1,048,576

| can’t come to work tomorrow

Temperature

Thinking

Thinking mode

Set thinking budget -

Model 2 output | can’t come to work tomorow CER: 4%
Tools A
Structured output -
Based on this, which model should be prefered? Code execution S
Function calling -
4+ Thoughts (experimental) Auto Grounding with Google Search =

Expand to view model thoughts . URL context -

Based on the image, Model 2 should be preferred. Advanced settings v
Here's the reasoning:

1. Severity of the Error:
Model 1 changes the ground truth "I can't come to work tomorrow” to *I can come to work tomorrow.” This completely inverts the meaning of the sentence. This is a critical semantic error.
Model 2 changes “tomorrow” to "tomorow." This is a minor spelling mistake that does not change the meaning of the sentence at all. The user's intent is still perfectly clear.
2. The Limitation of the Metric (CER):
The image highlights a key weakness of using Character Error Rate (CER) as the only metric for evaluating models. Both models have a CER of 4%, but the impact of their errors is vastly different.

In conclusion, while both models have an identical error rate on paper, Model 2's output is far superior because it preserves the original meaning of the sentence. Model 1's error, though small in terms of character count, is a catastrophic failure in comprehension.

5 &



Automatic metrics (BLEU, ROUGE) correlate poorly with human judgments for creative NLG.

‘G-EVAL Framework |

1. Prompt: Task intro + detailed evaluation criteria.
2. Auto Chain-of-Thought (CoT): GPT-4 generates step-by-step evaluation instructions.

3. Scoring: Form-filling paradigm; probability-weighted aggregation yields continuous scores.




Task Introduction

You will be given one summary written for a news
article. Your task is to rate the summary on one

metric «=«+**

Evaluation Criteria

Coherence (1-5) - the collective quality of all
sentences. We align this dimension with the DUC

quality question of structure and coherence «+++++

4 Evaluation Steps )

1. Read the news article carefully and identify the
main topic and key points.

2. Read the summary and compare it to the news
article. Check if the summary covers the main topic
and key points of the news article, and if it presents
them in a clear and logical order.

3. Assign a score for coherence on a scale of 1 to
10, where 1 is the lowest and 5 is the highest based

Qn the Evaluation Criteria. /

\

( Input Context o

Article: Paul Merson has restarted his row with
Andros Townsend after the Tottenham midfielder
was brought on with only seven minutes remaining

\Jn his team 's 0-0 draw with Burnley on ----*-

A

( Input Target

Summary: Paul merson was brought on with only
seven minutes remaining in his team 's 0-0 draw

\with burnley «+=+-- y

Evaluation Form (scores ONLY):

Vv

- Coherence:

0.6

0.4
G-Eval 0.2

®
1 2 3 4 5

T
Weighted Summed Score: 2.59

J




Coherence Consistency Fluency Relevance AVG

Metrics
P T P T 14 ¢ 1] P T P T
ROUGE-1 0.167 0.126 | 0.160 0.130 | 0.115 0.094 | 0.326 0.252 | 0.192 0.150
ROUGE-2 0.184 0.139 | 0.187 0.155 | 0.159 0.128 | 0.290 0.219 | 0.205 0.161
ROUGE-L 0.128 0.099 | 0.115 0.092 | 0.105 0.084 | 0.311 0.237 | 0.165 0.128

BERTScore 0.284 0.211 | 0.110 0.090 | 0.193 0.158 | 0.312 0.243 | 0.225 0.175
MOVERSscore | 0.159 0.118 | 0.157 0.127 | 0.129 0.105 | 0.318 0.244 | 0.191 0.148
BARTScore 0.448 0.342 | 0.382 0.315 | 0.356 0.292 | 0.356 0.273 | 0.385 0.305

UniEval 0.575 0.442 | 0.446 0.371 | 0.449 0.371 | 0426 0.325 | 0474 0.377
GPTScore 0.434 - 0.449 - 0.403 - 0.381 - 0.417 -
G-EVAL-3.5 0.440 0.335 | 0.386 0.318 | 0.424 0.347 | 0.385 0.293 | 0.401 0.320
- Probs 0359 0.313 | 0361 0.344 | 0.339 0.323 | 0.327 0.288 | 0.346 0.317
G-EVAL-4 0.582 0.457 | 0.507 0.425 | 0.455 0.378 | 0.547 0.433 | 0.514 0.418
- Probs 0.560 0.472 | 0.501 0.459 | 0.438 0.408 | 0.511 0.444 | 0.502 0.446
- CoT 0.564 0.454 | 0.493 0413 | 0403 0.334 | 0.538 0.427 | 0.500 0.407

Table 1: Summary-level Spearman (p) and Kendall-Tau (7) correlations of different metrics on SummEval bench-
mark. G-EVAL without probabilities (italicized) should not be considered as a fair comparison to other metrics on 7,
as it leads to many ties in the scores. This results in a higher Kendall-Tau correlation, but it does not fairly reflect
the true evaluation ability. More details are in Section 4.
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Figure 2: Averaged G-EVAL-4’s scores for human-
written summaries and GPT-3.5 summaries, divided
by human judges’ preference.

1. NLG outputs from high-quality systems are
in natural difficult to evaluate. The authors of
the original paper found that inter-annotator
agreement on judging human-written and
LLM-generated summaries is very low, with
Krippendorff’s alpha at 0.07.

2. G-EVAL may have a bias towards the LLM-

generated summaries because the model could
share the same concept of evaluation criteria
during generation and evaluation.
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Intro

- The diffusion reconstruction on real images can preserve the image content while leaving
the fingerprint of the diffusion model on the output images.

- These reconstructed images can serve as informative yet hard samples for detectors to
learn the subtle differences between real and generated images.

- This paper proposes a novel training framework named Diffusion Reconstruction
Contrastive Training (DRCT).

- DRCT significantly improves the detection accuracy and generalization ability of
diffusion-generated image detectors.



Diffusion Reconstruction Contrastive Training (DRCT)
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DRCT consists of a reconstruction stage
and a training stage:

Reconstruction stage: a large
number of images are produced by
reconstructing both real and
generated image using selected
diffusion models, which are then
prepared for the training of the
classifier.

Training stage: 4 types of samples:
real images, real reconstructed
images, fake images, and fake
reconstructed images, are used for
computing the contrastive loss and
the classification loss.



DRCT-2M Dataset

- Collection of 2 million images for training and evaluation. It consists of two parts:
- Images automatically generated by diffusion-based models (prompts are derived from the MSCOCO)
- Images collected from real-world scenarios (Midjourney and CIVITAI)

The DRCT-2M dataset involves 16 types of stable diffusion models, including LDM, SDv1.4, SDv1.5, SDv2,
SDXL, SDXL-refiner, SD-Turbo, SDXL-Turbo, LCM-SDv1.5, LCM-SDXL, SDv1-Ctrl, SDv2-Ctrl, SDXL-Ctrl,
SDv1-DR, SDv2-DR and SDXL-DR.

The prompt used for image generation is “A big burly grizzly bear is shown with grass in the background.

e e
¥
¥ & »

LCM-SDvl.5 LCM-SDXL SDvl1-Ctrl

SDv2-Ctrl  SDXL-Ctrl  SDv1-DR SDv2-DR  SDXL-DR



Some experimental details

Data: The compared methods are trained on the DRCT-2M dataset
(utilizing real images from MSCOCO) and the Genlmage.

Evaluation metric: Accuracy (ACC) as the metric to evaluate
detection performance, using a threshold of 0.5.

t-SNE Feature 2
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Table 1. Accuracy (ACC, %) comparisons of our DRCT and other generated image detectors on DRCT-2M. Except for DIRE and DRCT,
all methods are only trained on SDv1.4 and then evaluated on different testing subsets on DRCT-2M. For the training data of DIRE and
DRCT, when the Diffusion Reconstructed (DR) model is SDv1, the original fake images were generated by SDv1.4. When the DR model

is SDv2, the original fake images were generated by SDv2.

SD Variants Turbo Variants LCM Variants ControlNet Variants DR Variants
Method DR Avg.
SDXL- SD- SDXL- LCM- LCM- SDvl- SDv2- SDXL- SDvl- SDv2- SDXL-
LDM  SDvl4 SDvl.5 SDv2 SDXL poGrer Tubo Turbo SDvL.5S SDXL Cul  Cwl Col DR DR DR
CNNSpot - 9987 9991 9990 9755 6625 86.55 86.15 7242 9826 6172 9796 8589 8284 6093 5141 5028 S8LI2
F3Net - 9985 9978 9979 88.66 5585 87.37 6829 6366 9739 5498 9798 7239 81.99 6542 5039 5027 7713
CLIP/RN50 - 9900 99.99 9996 9461 6208 9143 8357 6440 9897 5743 9974 80.69 8203 6583 50.67 5047 80.05
GramNet - 9940 9901 9884 9530 6263 80.68 7119 6932 9305 5702 8997 7555 8268 5123 5001 50.08 76.62
De-fake - 921 9953 9951 89.65 64.02 6924 9200 9393 99.13 70.89 5898 6234 6666 5012 50.16 5000 7552
Conv-B - 9997 1000 99.97 9584 6444 8200 80.82 6075 9927 6233 99.80 8340 7328 6165 5179 5041 79.11
UnivFD - 9830 9622 9633 9383 9101 9391 8638 8592 9044 8899 9041 81.06 89.06 5196 51.03 5046 8346
DIRE SDvl 98.19 9994 9996 68.16 5384 7193 5887 5435 9978 5973 99.65 6420 59.13 5199 5004 4997 7123
DIRE SDv2 5462 7589 7604 9987 5990 9308 99.77 5755 8729 7253 67.85 99.69 6440 4996 5248 4992 7255
DRCT/Conv-B (ours) SDvl 9991 9990 9990 9632 83.87 8563 9188 7004 99.66 7876 99.90 9501 8121 9990 9540 7539 90.79
DRCT/Conv-B (ours) SDv2 99.66 98.56  98.48 99.85 96.10 98.68 99.59 8330 9845 9378 9668 99.85 97.66 9391 99.87 9039 96.55
DRCT/UnivFD (ours) SDvl 9674 9626 9633 9489 9624 9346 9343 9294  91.17 9501 9560 9268 9195 9410 6955 57.43 90.49
DRCT/UnivFD (ours) SDv2 9445 9435 9424 9505 9561 9538 9481 9448 9166 9554 9386 9348 9354 8434 8320 67.61 9135




Takeaways

- The paper proposes a universal framework - Diffusion Reconstruction Contrastive
Training (DRCT), for enhancing the generalizability of existing methods for detecting
diffusion-based generated images.

- While DRCT also boosts the detection accuracy for GAN-generated images, the
improvement is not as significant.

- This difference is mainly due to the unique generative artifacts produced by GANs
versus those produced by diffusion-based methods - opportunity for future work :)



