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A more formal model
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Different State Spaces
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Feedback Dimensions
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ColPali: EFFICIENT DOCUMENT RETRIEVAL WITH
VISION LANGUAGE MODELS
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Models. ArXiv, abs/2407.01449.



Background —Multimodal Large Language Models (MLLMs) vs. Large Language Models
(LLMs)

MLLMs are a superset of Large Language Models LLMs:
They have the added ability to process and understand images, charts, tables, and figures.

They typically use an LLM decoder as the backbone, should retain all text-based
capabilities (includes reasoning) of LLM:s.
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Why MLLMs for Document Understanding?

Documents are inherently multimodal—they combine text, charts, tables, and figures, where
LLM struggle to extract insights from.

() Documents represent knowledge across different domains with diverse formats — Scientific
papers, financial reports, legal contracts, and medical records...

957 MLLMs unlock a new frontier in document retrieval, summarization, and comprehension
by handling all these modalities simultaneously.

Ferroelectrics UCLA
T, T<T, —_ -
=21 . o%e®0’%"?
}L):D [ ==ee °O’°P 00'%0
= (] .UQ. 05a®

o @0 @nz o @0 Onz
= Lead Zirconium Titanate !

= pzT
= Pb(Zr,Ti,,)0,
S

® 1952 Shirane, Suzuki : Pb(Zr,Ti)O, solid .
solutions Fermosiectric <7, Paraslectric 17,

* 1955 Jaffe, Cook, Berlincourt, Gerson: S Senvelte { i
Complete Study of PZT formulations ) R
* Curie temperature 170-360 ]/ )/ wewer R | B e

Scientific papers, slides, reports...




Main Paper Idea:

Current document retrieval methods rely heavily on text extraction (OCR, parsing), neglecting
visual cues.

ColPali proposes a vision-based retrieval model that indexes document pages directly from

images using Vision-Language Models (VLMs).

Outcome: ColPali is faster, simpler, and more accurate than conventional retrieval systems.
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How ColPali Works?

Multi-Vector Vision Embeddings:

e Uses PaliGemma-3B, a Vision-Language Model, to encode images and query into multi-vector embeddings
Late Interaction Mechanism:

e Inspired by ColBERT, performs fine-grained matching between query and document embeddings.
End-to-End Training with Contrastive Learning:

e Trained on 118K query-page pairs (academic + synthetic datasets).
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ViDoRe: A New Benchmark for Document Retrieval

Introduced in this paper to evaluate retrieval performance across:

Different document types (academic, administrative, scientific).

Multiple modalities (text, tables, infographics, figures).

Various languages (English, French).
Two evaluation categories:

o  Academic Tasks: Repurposed VQA datasets (e.g., DocVQA, InfoVQA, arXivQA).
o  Practical Tasks: Domain-specific retrieval benchmarks (e.g., government, healthcare, energy).

Dataset Language # Queries # Documents Description

Academic Tasks

DocVQA English 500 500 Scanned documents from UCSF Industry
InfoVQA English 500 500 Infographics scrapped from the web
TAT-DQA English 1600 1600 High-quality financial reports
arXiVQA English 500 500 Scientific Figures from arXiv
TabFQuAD French 210 210 Tables scrapped from the web
Practical Tasks

Energy English 100 1000 Documents about energy
Government English 100 1000 Administrative documents
Healthcare English 100 1000 Medical documents

Al English 100 1000 Scientific documents related to AL
Shift Project French 100 1000 Environmental reports

Table 1: ViDoRe comprehensively evaluates multimodal retrieval methods.



5 RESULTS

ArxivQ DocQ InfoQ TabF TATQ Shift Al Energy Gov. Health. | Avg.
Unstructured text-only
- BM25 - 34.1 - - 44.0 59.6 90.4 78.3 78.8 82.6 -
- BGE-M3 - 284,57 - - 36.1,79 68.5ts9 88.4120 76.8y15 77.7,11 84.6120 | -
Unstructured +ocr
- BM25 31.6 36.8 62.9 46.5 62.7 64.3 92.8 85.9 83.9 87.2 65.5
- BGE-M3 314102 25.7p110 60.1528 70.812:3 50.5,122 732159 90.2126 83.6523 849110 91.1429 | 66.1406
Unstructured + captioning
- BM25 40.1 38.4 70.0 354 61.5 60.9 88.0 84.7 82.7 89.2 65.1
- BGE-M3 35. 7144 329554 T71.9+19 69.11337 43.8.179 73.11122 88.8108 83.3;14 80.4523 91.3421 | 67.0419
Contrastive VLMs
Jina-CLIP 254 11.9 35.5 20.2 33 3.8 15.2 19.7 214 20.8 17.7
Nomic-vision 17.1 10.7 30.1 16.3 27 1.1 12.9 10.9 11.4 15.7 12.9
SigLIP (vanitia) 43.2 30.3 64.1 58.1 26.2 18.7 62.5 65.7 66.1 79.1 51.4
Ours
SigLIP (Vanilia) 43.2 30.3 64.1 58.1 26.2 18.7 62.5 65.7 66.1 79.1 51.4
BiSigLIP (+finc-tuning) 58.5t153 329126 70.5t64 62.7146 30.5t43 26.5t78 7431118 73. 7180 742181 823132 | 58.6472
BiPali ¢Lim) 56.5,20 30.0y29 67.4,31 76.9+1142 33.4125 4371172 71.2131 61.95-17 73.8,04 73.6188 | 58.8+02
ColPali (+Late Inter) 79.1126 54.41245 81.8:144 839170 65.8::24 7321205 96.21250 91.0:201 9271159 9444205 | 8131225

Table 2: Comprehensive evaluation of baseline models and our proposed method on ViDoRe.
Results are presented using nDCG@5 metrics, and illustrate the impact of different components.
Text-only metrics are not computed for benchmarks with only visual elements.
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Autoregressive language models v.s. diffusion language models [1]

Autoregressive Language Models:

e Limited parallelism
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Diffusion Language Models:

e Parallel Decoding
e Better Controllability
e Dynamic Perception
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[1] Runpeng Yu, Qi Li, and Xinchao Wang. Discrete Diffusion in Large Language and Multimodal Models: A Survey. arXiv:2506.13759, 2025.



Mercury: Ultra-Fast Language Models Based on Diffusion [2]

Diffusion Large Language Model

Coding Index vs. Output Speed: Smaller models
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[2] Samar Khanna, Siddhant Kharbanda, Shufan Li, Harshit Varma, Eric Wang, Sawyer Birnbaum et al. Mercury: Ultra-Fast Language
Models Based on Diffusion. arXiv:2506.17298, 2025.
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Gemini Diffusion

Our state-of-the-art, experimental text diffusion model
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Intro

How can we obtain more accurate answers from a LLM?

How about Graphs?

e COT: chain-of thought
CHAeT O Can LLM:s solve graph problems?

o .TM: least-to-most /’\
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Can Language Models Solve Graph Problems in Natural Language?

,{ 1.C ivity } N 2.Cycle N 3. Topological Sort 4. Shortest Path "
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Determine if there is a path between In an undirected graph, (i) means that In an undirected graph, the nodes are
two nodes in the graph. Note that (i,j) node i and node j are connected with an | | In a directed graph with 5 nodes numbered from 0 to 4, and the edges are:
means that node i and node j are undirected edge. numbered from 0 to 4: an edge between node 0 and node 1 with
connected with an undirected edge. The nodes are numbered from 0 to 5, node 0 should be visited before node weight 2, ..
Graph: (0,1) (1,2) (34) (4,5) and the edges are: (34) (3,5) (10) (2,5) 4,.. Q: Give the shortest path from node 0 to
Q Is there a path between node 1 and (20) Q: Can all the nodes be visited? Give the | | node 4.
Lnode 4? ) [ Qs there a cycle in this graph? J | solution. JAN J
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There are 4 job applicants numbered :
from 0 to 3,Jand ??cl)bs numbered from In an undirected graph, (i,j) means that | |Inan undirected graph, the nodes are

In a directed graph, the nodes are

numbered from 0 to 3, and the edges 0 to 4. Each applicant is interested in node i and node j are connected with numbergd frqrp 0to 4, and every pode has an
are: ) some of the jobs. Each job can only an undirected edge. embedding. (ij) means tha? node i and node j
an edge from node 1 to node 0 with accept one applicant and a job The nodes are numbered from 0 to 4, are conn.ected with an undirected edge.
capacity 10, . applicant can be appointed for only one | | and the edges are: (42) (04) (4,3) (0,1) | | Embeddings: node 0: [1,1], ---

an edgt; fsrom node 0 to node 2 with job. 0,2) (4,1) (2,3) The edges are: (0,1) ..

capacity 6, ) Applicant 0 is interested in job 4, .. Q: Is there a path in this graph that In a simple graph convolution layer, each

an edge from node 2 to node 3 with Q?Eiln d an assignment of jojbs to visits every node exactly once? If yes, 'node"s embedding is u‘pdated by the sum of
capacity 4. ; applicants in such that the maximum give the path. Note that in a path, its neighbors’ embeddings.

Q: What is the maximum flow from node number of applicants find the job they adjacent nodes must be connected Q: What's the embedding of each node after
\1 to node 37 J | are interested in. JAN with edges. ) (one layer of simple graph convolution layer? )




<in-context exemplar>

In an undirected graph, the nodes are
numbered from 0 to 4, and the edges are:
an edge between node 0 and node 4 with
weight 4,

an edge between node 0 and node 3 with
weight 3,

an edge between node 0 and node 1 with
weight 3,

Q Give the shortest path from node 0 to
node 2.

) ——

<in-context exemplar>

In an undirected graph, the nodes are
numbered from 0 to 4, and the edges are:
an edge between node 0 and node 4 with
weight 4, ***

Let's construct a graph with the nodes and
edges first

Q: Give the shortest path from node 0 to
node 2.

A: All the paths from node 0 to node 2 are:
0,3,2 with a total weight of 3 + 1 =4,
0,1,4,2 with a total weight of 3 + 4 + 2 = 9,
0,4,3,2 with a total weight of 4 + 1 + 1 = 6.
The weight of path 0,3,2 is the smallest, so
the shortest path from node 0 to node 2 is
0,3,2 with a total weight of 4.

<in-context exemplar>

In an undirected graph, the nodes are numbered from
0 to 4, and the edges are:

an edge between node 0 and node 4 with weight 4, ...
Q: Give the shortest path from node 0 to node 2.

A: All the paths from node 0 to node 2 are:

0,3,2 with a total weight of 3 + 1 =4,

0,1,4,2 with a total weight of 3 + 4+ 2 = 9,

0,4,3,2 with a total weight of 4 + 1 + 1 = 6.

The weight of path 0,3,2 is the smallest, so the
shortest path from node 0 to node 2 is 0,3,2 with a
total weight of 4.




Results

Dataset ZERO-SHOT  FEW-SHOT CoT 0-CoT CoT+SC Avg.
GENERAL 74.67 83.33 85.33 66.00 82.67 78.40
CHAIN 51.67 (-23.00) 45.00 (-35.33) 40.83 (-44.50) 92.50 (+26.50) 44.17 (-38.50) 54.83 (-23.57)
CLIQUE 60.83 (-13.84) 73.33(-10.00) 85.00(-0.33)  52.50 (-13.50)  83.33 (+0.66)  71.00 (-7.40)
Method Cycle Shortest Path Hamilton Path
Easy Medium Hard Avg. Easy Hard Easy(PC) Hard (PC) Avg. Easy Hard Avg.
CoT 8467 6333 5325 66.75 63.89 29.50 76.84 35.79 5151 40.00 8.00 24.00
CoT+BAG 8600 6933 6200 7244 67.78 33.50 79.20 42.56 55.76 38.67 6.00 2234
COT+ALGORITHM 7733 7400 64.00 71.78 63.89 28.00 76.06 38.70 51.66 36.67 7.50 22.09




Take away message:

e ColPali simplifies and enhances document retrieval by leveraging Vision-Language
Models (VLMs) t, eliminating the need for text extraction.

e ColPali also shows a way to MLLM application into different specific domains. This
could go beyond retrieval to knowledge extraction, Forensic/Financial/Cultural industry
document analysis, and Al-powered research assistants.
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IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 1, JANUARY 2023

Understanding Barriers to Network Exploration with Visualization

A Report from the Trenches

Mashael AlKadi, Vanessa Serrano, James Scott-Brown, Catherine Plaisant,
Jean-Daniel Fekete, Uta Hinrichs and Benjamin Bach
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Fig. 1: Barriers (red) that may be encountered during visual network exploration process, while translating domain concepts (ideas)

into network structures and visualizations (forms) and back into findings.
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Network visualization tools are becoming increasingly popular. How do users engage in the visual exploration
of network data, which exploration strategies they employ, and how they prepare their data, define questions,
and decide on visual mappings?
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Study 1 - Researchers tracked users of the Vistorian logging 534 sessions to
understand how it is being used.

Study 2 - Researchers collected qualitative during during a 6-week network
exploration course by monitoring 36 participants. 50% without experience in
network visualization.



Missing Goals & Questions

X

Choosing schemas and visualizations
is difficult without specific goals and
can lead to drill down fallacy.

Sketching, and examples improved
results.

Preconceived Ideas & Mental
Images / Deciding on a Network
Structure

X

Wrong preconceived about what a
graph visualization is (e.g. exclusively
a social network graph)

Guided process to construct schemas
and fast sketching.

Overall
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Lee, Doris Jung-Lin, et al. "Avoiding drill-down fallacies with vispilot: Assisted exploration of
data subsets." Proceedings of the 24th International Conference on Intelligent User
Interfaces. 2019.



Choosing The Right Level of

Abstraction
X  Choosing the wrong level of abstraction
can lead to cluttered graphs.

v Transformation and aggregation
strategies.

Interpreting Visual Patterns in

Visualization
X Understanding patterns in data is
complex specially when interaction can
lead to changes of visual patterns
on-the-fly.

v’ Support multiple coordinated views,
support for examples.

- Establish Trust in a Network
Visualization

X

Unfamiliar visualization (e.g. adjacency
matrix) and misunderstanding provenance.

Showing examples of use in credible
sources (e.g.) journalism, explaining
algorithms, explaining anti-patterns.
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G1: Teaching LLMs to Reason on Graphs with
Reinforcement Learning

Xiaojun Guo* Ang Li" Yifei Wang"
Peking University Peking University MIT
Stefanie Jegelka Yisen Wang$
TUM' and MIT? Peking University
Abstract

Although Large Language Models (LLMs) have demonstrated remarkable progress,
their proficiency in graph-related tasks remains notably limited, hindering the
development of truly general-purpose models. Previous attempts, including pre-
training graph foundation models or employing supervised fine-tuning, often face
challenges such as the scarcity of large-scale, universally represented graph data.
We introduce G1, a simple yet effective approach demonstrating that Reinforcement
Learning (RL) on synthetic graph-theoretic tasks can significantly scale LLMs’
graph reasoning abilities. To enable RL training, we curate Erdds, the largest graph
reasoning dataset to date comprising 50 diverse graph-theoretic tasks of varying
difficulty levels, 100k training data and 5k test data, all drived from real-world
graphs. With RL on Erd&s, G1 obtains substantial improvements in graph reason-
ing, where our finetuned 3B model even outperforms Qwen2.5-72B-Instruct (24x
size). RL-trained models also show strong zero-shot generalization to unseen tasks,
domains, and graph encoding schemes, including other graph-theoretic bench-
marks as well as real-world node classification and link prediction tasks, without
compromising general reasoning abilities. Our findings offer an efficient, scalable
path for building strong graph reasoners by finetuning LLMs with RL on graph-
theoretic tasks, which combines the strengths of pretrained LLM capabilities with
abundant, automatically generated synthetic data, suggesting that LLMs possess
graph understanding abilities that RL can elicit successfully. Our implementation
is open-sourced at https://github.com/PKU-ML/G1, with models and datasets
hosted on Hugging Face collections PKU-ML/G1 for broader accessibility.



Motivation

LLMs excel in text reasoning, but struggle with graph reasoning

Gap:

e Limited data for graph reasoning,

e graph-structured problems (like connectivity, shortest paths, cycles, centrality,
NP-hard problems) are not well represented in internet text.

Problem Statement

e Goal: teach LLMs to solve graph-theoretic tasks



Problem Statement

e (Goal: teach LLMs to solve graph-theoretic tasks
e Key challenges:

o Complex & diverse graph structures

o Encoding graphs into text for LLMs

o Zero-shot generalization to new tasks and domains



G1 Approach

Core idea: use Reinforcement Learning (RL) on synthetic graph tasks

LLMs trained on Internet-scale data already have some graph reasoning ability, and we can
bring it out using their own trial and error without relying on human data.

RL reward: correctness of answers — no manual labels needed
Training pipeline:

1. Generate graph tasks (synthetic)

2. Fine-tune base LLM with RL

3. Evaluate on diverse benchmarks



The Erdos Dataset

e New benchmark for graph reasoning
e ~50 graph-theoretic tasks
e 100K training, 5K test examples

e Derived from real-world graphs

Difficulty

Tasks

Ratio

Base Model Acc

G1 Acc

Easy

Node Number, Dominating Set, Common Neighbor, Edge Num-
ber, Neighbor, BFS, Has Cycle, DFS, Minimum Spanning Tree,
Edge Existence, Is Regular, Degree, Is Tournament, Density

29.16%

57.16%

95.07 %

Medium

Adamic Adar Index, Clustering Coefficient, Connected Compo-
nent Number, Bipartite Maximum Matching, Local Connectivity,
Jaccard Coefficient, Min Edge Covering, Is Eularian, Degree
Centrality, Is Bipartite, Resource Allocation Index

22.91%

42.55%

88.91%

Hard

Max Weight Matching, Closeness Centrality, Traveling Sales-
man Problem, Strongly Connected Number, Shortest Path, Cen-
ter, Diameter, Barycenter, Radius, Topological Sort, Periphery,
Betweenness Centrality, Triangles, Average Neighbor Degree,
Harmonic Centrality, Bridges

33.33%

18.87%

50.44 %

Challenging

Isomophic Mapping, Global Efficiency, Maximal Independent
Set, Maximum Flow, Wiener Index, Hamiltonian Path, Min Ver-
tex Cover

14.58%

3.29%

23.57%
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3.29%

23.57%




Rule-based Rewards on Graphs.

e Strict value matching.For tasks that have a unique ground truth value, e.g.,
node counting. a reward of +1, otherwise 0

e Jaccard Index for set matching. For problems whose answer is not a single
value s” but an unordered e.g., common neighbors of two nodes

e Algorithmic verification. Lastly, for problems that have multiple correct solutions
(e.g., shortest paths). algorithmic verifiers to check correctness of the proposed
solutions.



Test accuracy (%) comparison of different LLMs of varying sizes on our Erdés benchmark tasks. In all experiments
Qwen2.5-Instruct is used as as base model.

Model Easy Medium Hard Challenging Average
Proprietary (Unknown Parameters)
GPT-40-mini 76.20 72.07 28.81 3.34 47.60
OpenAl 03-mini (w/ tool use) 74.83 83.49 59.28 43.22 64.90
3B Parameters
Llama-3.2-3B-Instruct 36.50 21.45 6.81 1.14 17.32
Qwen2.5-3B-Instruct (base model) 45.71 30.18 9.44 1.29 22.72
Direct-SFT-3B (Ours) 74.43 75.27 43.69 14.43 53.78
CoT-SFT-3B (Ours) 65.57 67.64 29.44 4.57 43.56
G1-3B (Ours) 94.86 84.64 41.25 7.57 59.76 (+37.04)
7B Parameters
Llama-3.1-8B-Instruct 49.21 30.45 13.69 1.43 25.10
Qwen2.5-7B-Instruct (base model) 57.36 42.55 18.87 3.29 32.06
Qwen2.5-Math-7B-Instruct 52.79 39.64 14.82 2.46 28.94
DeepSeek-R1-Distill-Qwen-7B 71.79 73.73 39.12 16.57 51.64
GraphWiz-7B-RFT 14.57 13.73 1.38 0.47 7.70
GraphWiz-7B-DPO 20.36 19.09 1.44 0.78 10.59
Direct-SFT-7B (Ours) 73.57 75.91 39.12 10.71 51.76
CoT-SFT-7B (Ours) 72.57 75.73 38.50 11.00 51.34
G1-7B (Ours) 95.07 88.91 50.44 23.57 66.16 (+34.10)
70B Parameters
Llama-3.1-70B-Instruct 68.07 55.45 31.87 4.44 42.28

Qwen2.5-72B-Instruct 7/1l74 67.81 33.37 8.22 47.16




Transferability to Other Graph Reasoning Benchmarks

Table 3: Test accuracy (%) by computational com- Table 4: Test accuracy (%) by computational

plexity on the GraphWiz benchmark. complexity on the GraphArena benchmark.

Model Linear Poly NP-Complete Avg. Model Poly-Time NP-Complete X
Llama-3.2-3B-Instruct 29.80  3.00 2.50 19.80 Easy Hard Easy Hard
Qwen2.5-3B-Instruct (base) 40.25 9.58 69.12 36.44 Llama-3.2-3B-Instruct 22.25 6.75 8.00 0.66 8.40
G138 5806 2675 .12 50.08 Qwen2.5-3B-Instruct (base) 31,50 14.50 17.33 150 14.85
Llama-3.1-8B-Instruct 54.00 5.67 32.12 33.03 G0 SRV 28132406 T TN

. Llama-3.1-8B-Instruct 47.00 21.25 22.00 2.16 20.90
DeepSeek-R1-Distill-Qwen-7B ~ 57.69  31.42 70.88 51.86

DeepSeek-R1-Distill-Qwen-7B 66.0 2275 34.83 150 28.65

GraphWiz-7B-RFT 67.56 29.83 43.38 49.61 .

- GraphWiz-7B-RFT 2.25 0.75 0.83 0.00 0.85
GraphWiz-7B-DPO 63.88  36.25 39.50 49.25 GraphWiz-7B-DPO 0.25 100 066 0.6 049
Qwen2.5-7B-Instruct (base) 49.06 17.92 76.12 44.69 Qwen2.5-7B-Instruct (base) 6200 3575 2883 2.16 28.84
G1-7B 68.00 3225 72.62 57.11 G1-7B 7750 4425 4733 850 4110

These results demonstrate that G1 has strong zero-shot generalization ability to unseen graph
encoding methods, graph distributions, and graph tasks.



G1 on Real-world, Non-graph-theoretic Graph-reasoning Tasks

Table 5: Test accuracy (%) on Node Classification

- _ and Link Prediction benchmarks.
node classification and link

rediction .

p Model Node i Avg.
_ _ Cora PubMed Cora PubMed

Cora and PubMed citation graphs Llama-3.2-3B-Instruct 6877 7520 6040 57.60  64.79

Qwen2.5-3B-Instruct (base) 70.83 75.08 62.15 58.38 65.66

. . CoT-SFT-3B 7597 8147 7570 7152  75.12

Each instance includes a —

description of the target node (or G1-3B 7725 83.88 7897 69.75 75.16

and title, along with the textual and DeepSeek-R1-Distill-Qwen-7B  76.50  81.25  68.03  78.72  78.80

structural information of Qwen2.5-7B-Instruct (base) 7930 8535 8822 88.67 85.50

neighboring nodes. CoT-SFT-7B 7320 8325 6470 68.12  73.17

G1-7B 79.20 86.20 87.98 91.88 87.29




Understanding the Benefits of RL Training for Graph Reasoning

Qwen2.5-3B-Instruct (base),
G1-Zero-3B (RL only),
and G1-3B (SFT & RL).

1) Breadth-First Search (BFS),
2) Dijkstra’s algorithm,
3) Intuitive deductions
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ABSTRACT

Fugatto is a versatile audio synthesis and transformation model capable of follow-
ing free-form text instructions with optional audio inputs. While large language
models (LLMs) trained with text on a simple next-token prediction objective can
learn to infer instructions directly from the data, models trained solely on audio
data lack this capacity. This is because audio data does not inherently contain the
instructions that were used to generate it. To overcome this challenge, we introduce
a specialized dataset generation approach optimized for producing a wide range of
audio generation and transformation tasks, ensuring the data reveals meaningful
relationships between audio and language. Another challenge lies in achieving
compositional abilities — such as combining, interpolating between, or negating
instructions — using data alone. To address it, we propose ComposableART, an
inference-time technique that extends classifier-free guidance to compositional
guidance. It enables the seamless and flexible composition of instructions, leading
to highly customizable audio outputs outside the training distribution. Our evalua-
tions across a diverse set of tasks demonstrate that Fugatto performs competitively
with specialized models, while ComposableART enhances its sonic palette and
control over synthesis. Most notably, we highlight emergent tasks and properties
that surface in our framework’s — sonic phenomena that transcend conventional
audio generation — unlocking new creative possibilities. Demo Website.



Dataset generation

1- Free-Form Instruction Synthesis via pre-defined python generators
2- relative instruction generation (happy voice => happier voice)

3- use classifiers & LLM to generate descriptions

4- datasets that have explicit isolated factors

5- use Praat and Spotify’'s Pedalboard to edit speech and music
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Figure 4: Synthetic caption generation pipeline for Prompt-to-Voice (P2V).



Model & Operation

Language Sound
“Can you turn this calm sample T = Text Encoder S = Audio Encoder Audio Output
into extreme anger? (byTS5 pre-trained) (Transformer jointly trained)

T(enhance this)S(speech)

T(separate vocals from this)S(music)!:

T(create drums for this)S(keyboard track)' [ X-Atm“Blocks H Tssosformiee Blocks

T(synthesize dogs barking, birds chirping and electronic dance music)

| T(synthesize “Ah, ok. So, there’s no ..” given accent it_IT and this voice:)S(voice example)f

T(Can you make this calm sample)S(calm speech)T(into extreme anger?)

Noise

Figure 5: A description of Fugatto’s architecture and input handling.



Emergent sounds & tasks

The model ‘can’ generate sounds that were not present in the dataset, and do tasks that
it was not explicitly trained on doing.

https://fugatto.qithub.io/



https://fugatto.github.io/

