
REPRODUCIBLE EXPERIMENTS

THE “WHY” , THE “WHAT” AND SOME “HOWs”.

A MultiX Thematic Session Talk by Ujjwal Sharma

THE WHY

REPRODUCIBILITY
CHALLENGE

• Difficult to reproduce the results of a paper.

• Missing data, Model weights, Scripts, etc.

• Hyperparameters, Features, Data, Vocabulary
and other artifacts are lost.

• Impossible to recreate the secret sauce.

TRADITIONAL SOFTWARE VS. MACHINE
LEARNING

• Continuous, Iterative process, Optimize for metric

• Quality depends on data and tuning parameters

• Experiment tracking is difficult

• Over time data changes, model drift

• Compare + combine many libraries and models

• Diverse deployment environments

WHAT IS REPRODUCIBILITY

SOFTWARE REPRODUCIBILITY

1. In the context of software:

“Reproducibility is the capacity for an individual to reproduce a computational
experiment conducted by another party. This involves employing identical software
and datasets to replicate the experiment, while retaining the flexibility to modify
certain components—namely, the software and/or the data—facilitating a deeper
comprehension of the experiment and its constraints.”

MULTI-LAYER SOFTWARE STACKS

• Almost all software stacks used in computational science have a nearly universal
multi-layer structure:

1. Project-specific software: whatever it takes to do a computation using software building
blocks from the lower three levels: scripts, workflows, computational notebooks, small
special-purpose libraries and utilities

2. Discipline-specific research software: tools and libraries that implement models and
methods which are developed and used by research communities

3. Scientific infrastructure: libraries and utilities used for research in many different
disciplines, such as LAPACK, NumPy, or Gnuplot

4. Non-scientific infrastructure: operating systems, compilers, and support code for I/O, user
interfaces, etc.

MULTI-LAYER SOFTWARE STACKS

• Almost all software stacks used in computational science have a nearly universal
multi-layer structure:

1. Project-specific software: whatever it takes to do a computation using software building
blocks from the lower three levels: scripts, workflows, computational notebooks, small
special-purpose libraries and utilities

2. Discipline-specific research software: tools and libraries that implement models and
methods which are developed and used by research communities

3. Scientific infrastructure: libraries and utilities used for research in many different
disciplines, such as LAPACK, NumPy, or Gnuplot

4. Non-scientific infrastructure: operating systems, compilers, and support code for I/O, user
interfaces, etc.

Just addressing
project-specific
software (the top
layer) isn’t enough
to solve software
collapse; the lower
layers are still likely
to change.

WHAT CAN YOU DO?

• Prepare for Failure : Regard your code and its associated dependencies
susceptible to failure at any moment. In the event of a failure, be prepared to
start from scratch.

• Repair – whenever foundations start to move under your project (library
updates, foundational changes, etc.), duly perform the required repairs.

• Adaptability: Design your project to withstand disturbances, ensuring resilience
to unforeseen challenges. Don’t rely excessively on idiosyncratic attributes of
your development environment.

• Stability: Opt for secure and dependable foundational elements for your
foundations – OS, Compilers, etc.

CORE IDEAS

• Version Control for EVERYTHING: Development Environment, Experiments and
Code (and even Data).

• Ensure a replicable, deterministic path from data + code to results.

• Experiment logging:

• Log Evaluation measures.

• Freeze source of possible variation via fixed random seeds.

• Record intermediate results.

WHAT CAN YOU CONCRETELY
DO?

VERSION CONTROL YOUR CODE

• Use a Version Control System (VCS) such as Git or Mercurial to monitor all
your experimental code. Ensure that all relevant code files are tracked and
committed before initiating each experiment.

• Each attempt at implementing a new architecture, adjusting hyperparameters,
etc., should be associated with a unique repository state.

• Ensure that your Git repository is not in a 'dirty' state prior to code
execution, as the reasons for avoiding this will soon become clear."

VERSION CONTROL YOUR
ENVIRONMENT

• Many deep learning (DL) projects in Python employ a common mix of libraries
and discipline-specific research software, such as PyTorch and NumPy, to
achieve results.

• The conventional method involves tracking a requirements.txt file, which, when
used in tandem with venv, allows the creation of a new environment.

• However, it's worth noting that 'pip' isn't an ideal dependency manager. There
are more effective alternatives available, and it's recommended to explore
them for a more robust solution.

POETRY

1. Overview:
1. Poetry is a Python packaging and dependency management tool.

2. Aimed at improving upon limitations of traditional pip.
2. Dependency Management and Locking:

1. Declarative management using pyproject.toml.
2. Generates a poetry.lock file for consistent builds.

3. Single-File Configuration:
1. Simplifies project configuration with a single pyproject.toml file.

2. Contrast with pip, which may use multiple files.

POETRY

• Consistent Dependency Resolution:

• Uses a dedicated resolver for predictable environments.

• Ensures consistent dependency resolution.

• Semantic Versioning:

• Encourages the use of semantic versioning.

• Enhances understanding of package compatibility.

POETRY

• pyproject.toml:
• Project Configuration: Holds project metadata and configuration.

• Dependency Declaration: Specifies dependencies and constraints.

• Build and Tool Settings: Defines build and tool configurations.

• poetry.lock:
• Dependency Locking: Locks down exact versions of dependencies.

• Ensures Reproducibility: Guarantees consistent dependencies across environments.

• Dependency Hashes: Includes hashes for security and integrity verification.

WHY?

• It helps you reliably build deterministic environments everywhere (local
machine, snellius and even your supervisor’s machine!)

• Commit pyproject.toml and poetry.lock to VCS to allow users to build an
identical build environment.

VERSION CONTROL: EXPERIMENTS

• Versioning entire experiment requires versioning ALL of the artifacts on which
it depends.

• Code

• Data

• Runtime attributes (hyperparameters specified via the command line, GPU
configuration, etc.)

(PYTORCH) LIGHTNING

1. Offers a standardized training loop,
separating phases for clarity in code
organization.

2. Automatic GPU scaling and support for
multi-GPU training without manual
intervention.

3. Callback system for easy customization of
training behavior (e.g., logging, model
checkpointing).

4. Native support for Automatic Mixed
Precision, balancing speed and accuracy.

5. Seamless integration with tools like
TensorBoard for easy experiment tracking.

6. Default configurations enhance experiment
reproducibility.

Re-organize your code to
move specific parts of the
code into specialized functions

The Trainer can then invoke
the right functions in the right
order to train your model.

You can do a lot now!

All runs can be trivially logged.

Log your experiments and runs.

Strictly version code and artifacts.

Try to pin down sources of
variation and randomness

