REPRODUCIBLE EXPERIMENTS

THE “WHY” | THE “WHAT” AND SOME “HOWSs”.

A MultiX Thematic Session Talk by Ujjwal Sharma

THE WHY

Is Al leading to a reproducibility
crisisinscience?

Scientists worry that ill-informed use of artificial intelligence is driving a deluge of
unreliable or useless research.

By Philip Ball

v‘ vy ACM EIG on Reproducibility and Replicability

ABOUT WORKING GROUPS TAKING THE PULSE

Reproducibility and Replicability

ACM Emerging Interest Group

Fostering a diverse and inclusive community around the issues of reproducibility and replicability of computational research.

Home > Home

NEWSLETTER ACTIVITIES
Reproducibility Retro! is a resource on all things The EIG proposes two working groups, one to focus on
reproducibility. It is written for the ACM community and conference planning and execution activities, and the
for any stakeholder seeking to increase transparency, other to coordinate discussions and efforts regarding
reproducibility, and reusability of research. reproducibility (best/better) practices.

Access on ACM DL®

Join the EIG®

O REPRODUCIBLE RESEARCH

ML Reproducibility Checklist impact, NeurlPS 2019

Affiliation Confirmed code

First paper author ; No

#) Last paper author @ Yes 60

—

40

01 20

§.; Acceptance rate | % Submissions
“© L=

Academia
Industry —_’

6 743 211%
g @ —
)
T
a4
Papers submitted Acceptance rate Claimed for Participating Reproducibility

reproducibility institutions reports reviewed

NeurlPs 2019 Reproducibility Checklist

REPRODUCIBILITY
CHALLENGE

Difficult to reproduce the results of a paper.
Missing data, Model weights, Scripts, etc.

Hyperparameters, Features, Data,Vocabulary
and other artifacts are lost.

Impossible to recreate the secret sauce.

TRADITIONAL SOFTWARE VS
LEARNING

. MACHINE

Continuous, Iterative process, Optimize for metric
Quality depends on data and tuning parameters
Experiment tracking is difficult

Over time data changes, model drift

Compare + combine many libraries and models

Diverse deployment environments

WHAT IS REPRODUCIBILITY

SOFTWARE REPRODUCIBILITY

In the context of software:

“Reproducibility is the capacity for an individual to reproduce a computational
experiment conducted by another party. This involves employing identical software
and datasets to replicate the experiment, while retaining the flexibility to modify
certain components—namely, the software and/or the data—facilitating a deeper
comprehension of the experiment and its constraints.”

MULTI-LAYER SOFTWARE STACKS

Almost all software stacks used in computational science have a nearly universal
multi-layer structure:

Project-specific software: whatever it takes to do a computation using software building
blocks from the lower three levels: scripts, workflows, computational notebooks, small
special-purpose libraries and utilities

Discipline-specific research software: tools and libraries that implement models and
methods which are developed and used by research communities

Scientific infrastructure: libraries and utilities used for research in many different
disciplines, such as LAPACK, NumPy, or Gnuplot

Non-scientific infrastructure: operating systems, compilers, and support code for I/O, user
interfaces, etc.

MULTI-LAYER SOFTWARE STACKS

Almost all software stacks used in computational science have a nearly universal
multi-layer structure:

Project-specific software: whatever it takes to do a computation using software building
blocks from the lower three levels: scripts, workflows, computational notebooks, small
special-purpose libraries and utilities

Discipline-specific research software: tools and libraries that implement models and
methods which are developed and used by research communities

Scientific infrastructure: libraries and utilities used for research in many different
disciplines, such as LAPACK, NumPy, or Gnuplot

Non-scientific infrastructure: operating systems, compilers, and support code for I/O, user
interfaces, etc.

Just addressing
project-specific
software (the top
layer) isn’t enough
to solve software
collapse; the lower
layers are still likely
to change.

WHAT CAN YOU DO?

Prepare for Failure : Regard your code and its associated dependencies
susceptible to failure at any moment. In the event of a failure, be prepared to
start from scratch.

Repair — whenever foundations start to move under your project (library
updates, foundational changes, etc.), duly perform the required repairs.

Adaptability: Design your project to withstand disturbances, ensuring resilience
to unforeseen challenges. Don’t rely excessively on idiosyncratic attributes of
your development environment.

Stability: Opt for secure and dependable foundational elements for your
foundations — OS, Compilers, etc.

MANCHESIER

10 Simple Rules for Reproducible
Computational Research

1. ForEvery Result, Keep Track of How It Was

Produced

2. Avoid Manual Data Manipulation Steps

3. Archive the Exact Versions of All External Reco rd
Programs Used

4. Version Control All Custom Scripts Eve ryth| ng

5. Record All Intermediate Results, When Possible in
Standardized Formats

6. For Analyses That Include Randomness, Note

Underlying Random Seeds Automate
7. Always Store Raw Data behind Plots)
8. Generate Hierarchical Analysis Output, Allowing Eve rYth INg

Layers of Increasing Detail to Be Inspected

9. Connect Textual Statements to Underlying
Results

10. Provide Public Access to Scripts, Runs, and
Results

Sandve GK, Nekrutenko A, Taylor J, Hovig E (2013) Ten Simple Rules for Reproducible
Computational Research. PLoS Comput Biol 9(10): €1003285. doi:10.1371/journal.pcbi.1003285

CORE IDEAS

Version Control for EVERYTHING: Development Environment, Experiments and
Code (and even Data).

Ensure a replicable, deterministic path from data + code to results.
Experiment logging:
Log Evaluation measures.

Freeze source of possible variation via fixed random seeds.

Record intermediate results.

WHAT CAN YOU CONCRETELY
DO?

VERSION CONTROL YOUR CODE

Use a Version Control System (VCS) such as Git or Mercurial to monitor all
your experimental code. Ensure that all relevant code files are tracked and
committed before initiating each experiment.

Each attempt at implementing a new architecture, adjusting hyperparameters,
etc., should be associated with a unique repository state.

Ensure that your Git repository is not in a 'dirty' state prior to code
execution, as the reasons for avoiding this will soon become clear."

VERSION CONTROL YOUR
ENVIRONMENT

Many deep learning (DL) projects in Python employ a common mix of libraries
and discipline-specific research software, such as PyTorch and NumPy, to
achieve results.

The conventional method involves tracking a requirements.txt file, which, when
used in tandem with veny, allows the creation of a new environment.

However, it's worth noting that 'pip' isn't an ideal dependency manager.There
are more effective alternatives available, and it's recommended to explore
them for a more robust solution.

Building identical conda environments

You can use explicit specification files to build an identical conda environment on the same
operating system platform, either on the same machine or on a different machine.

Use the terminal for the following steps:

1.Run conda list --explicit to produce a spec list such as:

This file may be used to create an environment using:

$ conda create ——name <env> --file <this file>

platform: osx-64

@EXPLICIT
https://repo.anaconda.com/pkgs/free/osx-64/mkl1-11.3.3-0.tar.bz2
https://repo.anaconda.com/pkgs/free/osx—64/numpy-1.11.1-py35_0.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/openss1-1.0.2h-1.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/pip-8.1.2-py35_0.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/python-3.5.2-0.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/readline-6.2-2.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/setuptools-25.1.6-py35_0.tar.bz:
https://repo.anaconda.com/pkgs/free/osx-64/sqlite-3.13.0-0.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/tk-8.5.18-0.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/wheel-0.29.0-py35_0.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/xz-5.2.2-0.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/z1ib-1.2.8-3.tar.bz2

2. To create this spec list as a file in the current working directory, run:

conda list --explicit > spec-file.txt

1 Back to top

POETRY

Overview:
Poetry is a Python packaging and dependency management tool.
Aimed at improving upon limitations of traditional pip.
Dependency Management and Locking:
Declarative management using pyproject.toml.
Generates a poetry.lock file for consistent builds.
Single-File Configuration:
Simplifies project configuration with a single pyproject.toml file.

Contrast with pip, which may use multiple files.

POETRY

Consistent Dependency Resolution:
Uses a dedicated resolver for predictable environments.
Ensures consistent dependency resolution.

Semantic Versioning:
Encourages the use of semantic versioning.

Enhances understanding of package compatibility.

POETRY

pyproject.toml:
Project Configuration: Holds project metadata and configuration.
Dependency Declaration: Specifies dependencies and constraints.

Build and Tool Settings: Defines build and tool configurations.

poetry.lock:
Dependency Locking: Locks down exact versions of dependencies.
Ensures Reproducibility: Guarantees consistent dependencies across environments.

Dependency Hashes: Includes hashes for security and integrity verification.

WHY?

It helps you reliably build deterministic environments everywhere (local
machine, snellius and even your supervisor’s machine!)

Commit pyproject.toml and poetry.lock to VCS to allow users to build an
identical build environment.

VERSION CONTROL: EXPERIMENTS

Versioning entire experiment requires versioning ALL of the artifacts on which
it depends.

Code

Data

Runtime attributes (hyperparameters specified via the command line, GPU
configuration, etc.)

(PYTORCH) LIGHTNING

. Offers a standardized training loop,

separating phases for clarity in code
organization.

- Automatic GPU scaling and support for

multi-GPU training without manual
intervention.

- Callback system for easy customization of

training behavior (e.g., logging, model
checkpointing).

- Native support for Automatic Mixed

Precision, balancing speed and accuracy.

- Seamless integration with tools like

TensorBoard for easy experiment tracking.

- Default configurations enhance experiment

reproducibility.

import os

from torch import optim, nn, utils, Tensor
from torchvision.datasets import MNIST

from torchvision.transforms import ToTensor
import lightning as L

encoder nn.Sequential(nn.Linear(5), nn.ReLU(), nn.Linear(
decoder nn.Sequential(nn.Linear(3,), nn.ReLU(), nn.Linear(64,

class LitAutoEncoder(L.LightningModule):

Re-organize your code to def __init_(self, encoder, decoder):
epe super().__init__()
move specific parts of the self.encoder = encoder

self.decoder = decoder

code into specialized functions

training_step(self, batch, batch_1idx):

X, Yy = batch

X = x.view(x.size(0), -1)

z = self.encoder(x)

x_hat = self.decoder(z)

loss = nn.functional.mse_loss(x_hat, x)

self.log("train_loss", loss)
return loss

configure_optimizers(self):

optimizer = optim.Adam(self.parameters(), lr=
return optimizer

autoencoder = LitAutoEncoder(encoder, decoder)

The Trainer can then invoke
the right functions in the right
order to train your model.

dataset = MNIST(os.getcwd(), download=True, transform=ToTensor())
train_loader = utils.data.DatalLoader(dataset)

trainer = L.Trainer(limit_train_batches= , max_epochs=1)
trainer.fit(model=autoencoder, train_dataloaders=train_loader)

trainer = L.Trainer(
devices=4,
accelerator="gpu",

trainer = L.Trainer(
devices=4,
accelerator="gpu",
strategy="deepspeed_stage_2",
precision=16

You can do a lot now!

trainer = L.Trainer(
max_epochs=10,
min_epochs=5,
overfit batches=1
fast_dev_run=1l

)

trainer = L.Trainer(callbacks=[StochasticWeightAveraging(...)])

Runs (23)

Q Search runs

i

< Name (22 visualized)
(@ logical-cherry-29
® likely-sound-28
® @ dry-totem-27

® @ gentle-water-26
® (O eternal-hill-25
® () good-eon-23

® @ peach-plasma-22
® @ honest-brook-21
® @ vibrant-lion-20
® @ desert-spaceship-19
® @ toasty-wind-18
® @ zesty-dust-17

® @ jolly-sun-16

© @ eager-plasma-15

@® @ glowing-brook-13

=P Q se

arch panels with regex

epoch_train_bag_MAE
Showing first 10 runs
— dry-totem-27 — gentle-water-26 — eternal-hill-25 — good-eon-23
— peach-plasma-22 — honest-brook-21 = vibrant-lion-20
— desert-spaceship-19 = toasty-wind-18 = zesty-dust-17

8

6

4

2

Step-
0
50 100 150
epoch_train_bag_MSE
Showing first 10 runs
— dry-totem-27 — gentle-water-26 — eternal-hill-25 = good-eon-23
— peach-plasma-22 — honest-brook-21 = vibrant-lion-20
— desert-spaceship-19 = toasty-wind-18 = zesty-dust-17
120
100
80
60
40
20
0 —
50 100 150
> trainer 1
> System 25

> Hidden Panels 0

— dry-totem-27 — gentle-water-26 — eternal-hill-25

epoch_validation_bag_MSE

Showing first 10 runs

— good-eon-23

— peach-plasma-22 — honest-brook-21 = vibrant-lion-20
— desert-spaceship-19 = toasty-wind-18 = zesty-dust-17

— dry-totem-27 — gentle-water-26 — eternal-hill-25

All runs can be trivially logged.

X
G,
<>
sle

X 38 %

3 Create report

epoch_validation_bag_MAE
Showing first 10 runs
— dry-totem-27 — gentle-water-26 — eternal-hill-25 — good-eon-23
— peach-plasma-22 = honest-brook-21 = vibrant-lion-20
— desert-spaceship-19 = toasty-wind-18 =— zesty-dust-17

epoch_validation_mean_loss

Showing first 10 runs

— good-eon-23

— peach-plasma-22 — honest-brook-21 = vibrant-lion-20
— desert-spaceship-19 = toasty-wind-18 = zesty-dust-17

50

epoch_train_bag_exact_equality
Showing first 10 runs
— dry-totem-27 — gentle-water-26 — eternal-hill-25 = good-eon-23
— peach-plasma-22 = honest-brook-21 = vibrant-lion-20
— desert-spaceship-19 = toasty-wind-18 = zesty-dust-17

0.8 MY
0.6
0.4
0.2
0 Step
50 100 150
1-6 of 11 >

logical-cherry-29 ¢

Description What makes this run special? ¢

Privacy

Tags it

Author @ ujjwalx

State © Finished

Job job-git_git.sr.ht__ujjwal_greenrank_src_mnist_main.py:v16
Start time November 15th, 2023 at 1:51:05 am

Duration 1h 47m 50s

Run path ujjwalx/mnist-2/e6tm5qzk

Hostname mandla-1

0S Linux-6.2.0-36-generic-x86_64-with-glibc2.35

Python version 3.10.12

Python executable /home/ujjwal/.cache/pypoetry/virtualenvs/greenrank-llpzgsxI-py3.10/bin/python

Git r‘epository git clone git@git.sr.ht:~ujjwal/greenrank
Git state git checkout -b "logical-cherry-29" 90b33156f00a8170ed90b4632fc9d62a04823a8f
Command /home/ujjwal/projects/greenrank/src/mnist/main.py fit --config config.yml

System Hardware CPUcount 16
GPU count 1
GPU type NVIDIA GeForce RTX 4090

W&B CLI Version 0.15.12

MANCHESER

10 Simple Rules for Reproducible
Computational Research

1. ForEvery Result, Keep Track of How It Was

Log your experiments and runs.

Produced
2. Avoid Manual Data Manipulation Steps Strictly version code and artifacts
3. Archive the Exact Versions of All External Reco rd ’ |
Programs Used
4. Version Control All Custom Scripts Eve ryth | ng Try to pin down sources of

5. Record All Intermediate Results, When Possible in
Standardized Formats

6. For Analyses That Include Randomness, Note

variation and randomness

Underlying Random Seeds Automate
7. Always Store Raw Data behind Plots)
8. Generate Hierarchical Analysis Output, Allowing Eve rYth INg

Layers of Increasing Detail to Be Inspected

9. Connect Textual Statements to Underlying
Results

10. Provide Public Access to Scripts, Runs, and
Results

Sandve GK, Nekrutenko A, Taylor J, Hovig E (2013) Ten Simple Rules for Reproducible
Computational Research. PLoS Comput Biol 9(10): €1003285. doi:10.1371/journal.pcbi.1003285

